mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-26 17:20:59 -06:00
862 lines
32 KiB
C++
862 lines
32 KiB
C++
/*
|
|
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2017, IRIS
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/grid/utility/RegionMapping.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
|
|
#include <dune/grid/common/gridenums.hh>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
/**
|
|
* \file
|
|
* Facility for converting component rates at surface conditions to
|
|
* phase (voidage) rates at reservoir conditions.
|
|
*
|
|
* This uses the average hydrocarbon pressure to define fluid
|
|
* properties. The facility is intended to support Reservoir Voidage
|
|
* rates only ('RESV').
|
|
*/
|
|
|
|
namespace Opm {
|
|
namespace RateConverter {
|
|
/**
|
|
* Convenience tools for implementing the rate conversion
|
|
* facility.
|
|
*/
|
|
namespace Details {
|
|
namespace Select {
|
|
template <class RegionID, bool>
|
|
struct RegionIDParameter
|
|
{
|
|
using type =
|
|
typename std::remove_reference<RegionID>::type &;
|
|
};
|
|
|
|
template <class RegionID>
|
|
struct RegionIDParameter<RegionID, true>
|
|
{
|
|
using type = RegionID;
|
|
};
|
|
} // Select
|
|
|
|
/**
|
|
* \brief Computes the temperature, pressure, and counter increment.
|
|
*
|
|
* In a parallel run only cells owned contribute to the cell average.
|
|
* \tparam is_parallel Whether this is a parallel run.
|
|
*/
|
|
template<bool is_parallel>
|
|
struct AverageIncrementCalculator
|
|
{
|
|
/**
|
|
* \brief Computes the temperature, pressure, and counter increment.
|
|
* \param pressure The pressure.
|
|
* \param temperature The temperature.
|
|
* \param rs The rs.
|
|
* \param rv The rv.
|
|
* \param cell The current cell index.
|
|
* \param ownership A vector indicating whether a cell is owned
|
|
* by this process (value 1), or not (value 0).
|
|
* \param cell The cell index.
|
|
*/
|
|
std::tuple<double, double, double, double, int>
|
|
operator()(const std::vector<double>& pressure,
|
|
const std::vector<double>& temperature,
|
|
const std::vector<double>& rs,
|
|
const std::vector<double>& rv,
|
|
const std::vector<double>& ownership,
|
|
std::size_t cell){
|
|
if ( ownership[cell] )
|
|
{
|
|
return std::make_tuple(pressure[cell],
|
|
temperature[cell],
|
|
rs[cell],
|
|
rv[cell],
|
|
1);
|
|
}
|
|
else
|
|
{
|
|
return std::make_tuple(0, 0, 0, 0, 0);
|
|
}
|
|
}
|
|
};
|
|
template<>
|
|
struct AverageIncrementCalculator<false>
|
|
{
|
|
std::tuple<double, double, double, double, int>
|
|
operator()(const std::vector<double>& pressure,
|
|
const std::vector<double>& temperature,
|
|
const std::vector<double>& rs,
|
|
const std::vector<double>& rv,
|
|
const std::vector<double>&,
|
|
std::size_t cell){
|
|
return std::make_tuple(pressure[cell],
|
|
temperature[cell],
|
|
rs[cell],
|
|
rv[cell],
|
|
1);
|
|
}
|
|
};
|
|
/**
|
|
* Provide mapping from Region IDs to user-specified collection
|
|
* of per-region attributes.
|
|
*
|
|
* \tparam RegionId Region identifier type. Must be hashable by
|
|
* \code std::hash<> \endcode. Typically a built-in integer
|
|
* type--e.g., \c int.
|
|
*
|
|
* \tparam Attributes User-defined type that represents
|
|
* collection of attributes that have meaning in a per-region
|
|
* aggregate sense. Must be copy-constructible.
|
|
*/
|
|
template <typename RegionId, class Attributes>
|
|
class RegionAttributes
|
|
{
|
|
public:
|
|
/**
|
|
* Expose \c RegionId as a vocabulary type for use in query
|
|
* methods.
|
|
*/
|
|
using RegionID =
|
|
typename Select::RegionIDParameter
|
|
<RegionId, std::is_integral<RegionId>::value>::type;
|
|
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \tparam RMap Class type that implements the RegionMapping
|
|
* protocol. Typically an instantiation of \code
|
|
* Opm::RegionMapping<> \endcode.
|
|
*
|
|
* \param[in] rmap Specific region mapping that provides
|
|
* reverse lookup from regions to cells.
|
|
*
|
|
* \param[in] attr Pre-constructed initialiser for \c
|
|
* Attributes.
|
|
*/
|
|
template <class RMap>
|
|
RegionAttributes(const RMap& rmap,
|
|
const Attributes& attr)
|
|
{
|
|
using VT = typename AttributeMap::value_type;
|
|
|
|
for (const auto& r : rmap.activeRegions()) {
|
|
auto v = std::unique_ptr<Value>(new Value(attr));
|
|
|
|
const auto stat = attr_.insert(VT(r, std::move(v)));
|
|
|
|
if (stat.second) {
|
|
// New value inserted.
|
|
const auto& cells = rmap.cells(r);
|
|
|
|
assert (! cells.empty());
|
|
|
|
// Region's representative cell.
|
|
stat.first->second->cell_ = cells[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Retrieve representative cell in region.
|
|
*
|
|
* \param[in] reg Specific region.
|
|
*
|
|
* \return Representative cell in region \p reg.
|
|
*/
|
|
int cell(const RegionID reg) const
|
|
{
|
|
return this->find(reg).cell_;
|
|
}
|
|
|
|
/**
|
|
* Request read-only access to region's attributes.
|
|
*
|
|
* \param[in] reg Specific region.
|
|
*
|
|
* \return Read-only access to region \p reg's per-region
|
|
* attributes.
|
|
*/
|
|
const Attributes& attributes(const RegionID reg) const
|
|
{
|
|
return this->find(reg).attr_;
|
|
}
|
|
|
|
/**
|
|
* Request modifiable access to region's attributes.
|
|
*
|
|
* \param[in] reg Specific region.
|
|
*
|
|
* \return Read-write access to region \p reg's per-region
|
|
* attributes.
|
|
*/
|
|
Attributes& attributes(const RegionID reg)
|
|
{
|
|
return this->find(reg).attr_;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Aggregate per-region attributes along with region's
|
|
* representative cell.
|
|
*/
|
|
struct Value {
|
|
Value(const Attributes& attr)
|
|
: attr_(attr)
|
|
, cell_(-1)
|
|
{}
|
|
|
|
Attributes attr_;
|
|
int cell_;
|
|
};
|
|
|
|
using ID =
|
|
typename std::remove_reference<RegionId>::type;
|
|
|
|
using AttributeMap =
|
|
std::unordered_map<ID, std::unique_ptr<Value>>;
|
|
|
|
AttributeMap attr_;
|
|
|
|
/**
|
|
* Read-only access to region's properties.
|
|
*/
|
|
const Value& find(const RegionID reg) const
|
|
{
|
|
const auto& i = attr_.find(reg);
|
|
|
|
if (i == attr_.end()) {
|
|
throw std::invalid_argument("Unknown region ID");
|
|
}
|
|
|
|
return *i->second;
|
|
}
|
|
|
|
/**
|
|
* Read-write access to region's properties.
|
|
*/
|
|
Value& find(const RegionID reg)
|
|
{
|
|
const auto& i = attr_.find(reg);
|
|
|
|
if (i == attr_.end()) {
|
|
throw std::invalid_argument("Unknown region ID");
|
|
}
|
|
|
|
return *i->second;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Convenience functions for querying presence/absence of
|
|
* active phases.
|
|
*/
|
|
namespace PhaseUsed {
|
|
/**
|
|
* Active water predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not water is an active phase.
|
|
*/
|
|
inline bool
|
|
water(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
|
|
}
|
|
|
|
/**
|
|
* Active oil predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not oil is an active phase.
|
|
*/
|
|
inline bool
|
|
oil(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
|
|
}
|
|
|
|
/**
|
|
* Active gas predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not gas is an active phase.
|
|
*/
|
|
inline bool
|
|
gas(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
|
|
}
|
|
} // namespace PhaseUsed
|
|
|
|
/**
|
|
* Convenience functions for querying numerical IDs
|
|
* ("positions") of active phases.
|
|
*/
|
|
namespace PhasePos {
|
|
/**
|
|
* Numerical ID of active water phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of water if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
water(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::water(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Aqua ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Numerical ID of active oil phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of oil if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
oil(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::oil(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Liquid ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Numerical ID of active gas phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of gas if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
gas(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::gas(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Vapour ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
} // namespace PhasePos
|
|
} // namespace Details
|
|
|
|
/**
|
|
* Convert component rates at surface conditions to phase
|
|
* (voidage) rates at reservoir conditions.
|
|
*
|
|
* The conversion uses fluid properties evaluated at average
|
|
* hydrocarbon pressure in regions or field.
|
|
*
|
|
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem
|
|
*
|
|
* \tparam Region Type of a forward region mapping. Expected
|
|
* to provide indexed access through \code operator[]()
|
|
* \endcode as well as inner types \c value_type, \c
|
|
* size_type, and \c const_iterator. Typically \code
|
|
* std::vector<int> \endcode.
|
|
*/
|
|
template <class FluidSystem, class Region>
|
|
class SurfaceToReservoirVoidage {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] region Forward region mapping. Often
|
|
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
|
|
* deck.
|
|
*/
|
|
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
|
|
const Region& region)
|
|
: phaseUsage_(phaseUsage)
|
|
, rmap_ (region)
|
|
, attr_ (rmap_, Attributes())
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Compute average hydrocarbon pressure and maximum
|
|
* dissolution and evaporation at average hydrocarbon
|
|
* pressure in all regions in field.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* pressure for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
* \param[in] any The information and communication utilities
|
|
* about/of the parallelization. in any parallel
|
|
* it wraps a ParallelISTLInformation. Parameter
|
|
* is optional.
|
|
*/
|
|
void
|
|
defineState(const BlackoilState& state,
|
|
const boost::any& info = boost::any())
|
|
{
|
|
#if HAVE_MPI
|
|
if( info.type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const auto& ownership =
|
|
boost::any_cast<const ParallelISTLInformation&>(info)
|
|
.updateOwnerMask(state.pressure());
|
|
calcAverages<true>(state, info, ownership);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
std::vector<double> dummyOwnership; // not actually used
|
|
calcAverages<false>(state, info, dummyOwnership);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* state for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
*/
|
|
template <typename ElementContext, class EbosSimulator>
|
|
void defineState(const EbosSimulator& simulator)
|
|
{
|
|
|
|
// create map from cell to region
|
|
// and set all attributes to zero
|
|
const auto& grid = simulator.vanguard().grid();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
std::vector<int> cell2region(numCells, -1);
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
for (const auto& cell : rmap_.cells(reg)) {
|
|
cell2region[cell] = reg;
|
|
}
|
|
auto& ra = attr_.attributes(reg);
|
|
ra.pressure = 0.0;
|
|
ra.temperature = 0.0;
|
|
ra.rs = 0.0;
|
|
ra.rv = 0.0;
|
|
ra.pv = 0.0;
|
|
|
|
}
|
|
|
|
ElementContext elemCtx( simulator );
|
|
const auto& gridView = simulator.gridView();
|
|
const auto& comm = gridView.comm();
|
|
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
// use pore volume weighted averages.
|
|
const double pv_cell =
|
|
simulator.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
// only count oil and gas filled parts of the domain
|
|
double hydrocarbon = 1.0;
|
|
const auto& pu = phaseUsage_;
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
|
|
int reg = cell2region[cellIdx];
|
|
assert(reg >= 0);
|
|
auto& ra = attr_.attributes(reg);
|
|
auto& p = ra.pressure;
|
|
auto& T = ra.temperature;
|
|
auto& rs = ra.rs;
|
|
auto& rv = ra.rv;
|
|
auto& pv = ra.pv;
|
|
|
|
// sum p, rs, rv, and T.
|
|
double hydrocarbonPV = pv_cell*hydrocarbon;
|
|
pv += hydrocarbonPV;
|
|
p += fs.pressure(FluidSystem::oilPhaseIdx).value()*hydrocarbonPV;
|
|
rs += fs.Rs().value()*hydrocarbonPV;
|
|
rv += fs.Rv().value()*hydrocarbonPV;
|
|
T += fs.temperature(FluidSystem::oilPhaseIdx).value()*hydrocarbonPV;
|
|
}
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
auto& p = ra.pressure;
|
|
auto& T = ra.temperature;
|
|
auto& rs = ra.rs;
|
|
auto& rv = ra.rv;
|
|
auto& pv = ra.pv;
|
|
// communicate sums
|
|
p = comm.sum(p);
|
|
T = comm.sum(T);
|
|
rs = comm.sum(rs);
|
|
rv = comm.sum(rv);
|
|
pv = comm.sum(pv);
|
|
// compute average
|
|
p /= pv;
|
|
T /= pv;
|
|
rs /= pv;
|
|
rv /= pv;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Region identifier.
|
|
*
|
|
* Integral type.
|
|
*/
|
|
typedef typename RegionMapping<Region>::RegionId RegionId;
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion.
|
|
*
|
|
* \tparam Input Type representing contiguous collection
|
|
* of component rates at surface conditions. Must support
|
|
* direct indexing through \code operator[]()\endcode.
|
|
*
|
|
* \tparam Coeff Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] coeff Surface-to-reservoir conversion
|
|
* coefficients that can be used to compute total reservoir
|
|
* volumes from surface volumes with the formula
|
|
* q_{rT} = \sum_p coeff[p] q_{sp}.
|
|
* However, individual phase reservoir volumes cannot be calculated from
|
|
* these coefficients (i.e. q_{rp} is not equal to coeff[p] q_{sp})
|
|
* since they can depend on more than one surface volume rate when
|
|
* we have dissolved gas or vaporized oil.
|
|
*/
|
|
template <class Coeff>
|
|
void
|
|
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
|
|
{
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
|
|
const int iw = Details::PhasePos::water(pu);
|
|
const int io = Details::PhasePos::oil (pu);
|
|
const int ig = Details::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
|
|
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
|
|
coeff[iw] = 1.0 / bw;
|
|
}
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (ra.rs * ra.rv);
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double Rs = ra.rs;
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
coeff[io] += 1.0 / den;
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
coeff[ig] -= ra.rv / den;
|
|
}
|
|
}
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const double Rv = ra.rv;
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
|
|
const double den = bg * detR;
|
|
|
|
coeff[ig] += 1.0 / den;
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
coeff[io] -= ra.rs / den;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Converting surface volume rates to reservoir voidage rates
|
|
*
|
|
* \tparam Rates Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
* \param[in] surface_rates surface voluem rates for
|
|
* all active phases
|
|
*
|
|
* \param[out] voidage_rates reservoir volume rates for
|
|
* all active phases
|
|
*/
|
|
template <class Rates >
|
|
void
|
|
calcReservoirVoidageRates(const RegionId r, const int pvtRegionIdx, const Rates& surface_rates,
|
|
Rates& voidage_rates) const
|
|
{
|
|
assert(voidage_rates.size() == surface_rates.size());
|
|
|
|
std::fill(voidage_rates.begin(), voidage_rates.end(), 0.0);
|
|
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
|
|
const int iw = Details::PhasePos::water(pu);
|
|
const int io = Details::PhasePos::oil (pu);
|
|
const int ig = Details::PhasePos::gas (pu);
|
|
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
|
|
voidage_rates[iw] = surface_rates[iw] / bw;
|
|
}
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (ra.rs * ra.rv);
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double Rs = ra.rs;
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
voidage_rates[io] = surface_rates[io];
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
const double Rv = ra.rv;
|
|
voidage_rates[io] -= Rv * surface_rates[ig];
|
|
}
|
|
|
|
voidage_rates[io] /= den;
|
|
}
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const double Rv = ra.rv;
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
|
|
const double den = bg * detR;
|
|
|
|
voidage_rates[ig] = surface_rates[ig];
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
const double Rs = ra.rs;
|
|
voidage_rates[ig] -= Rs * surface_rates[io];
|
|
}
|
|
|
|
voidage_rates[ig] /= den;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion for solvent.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] double Surface-to-reservoir conversion
|
|
* coefficients for solvent.
|
|
*/
|
|
template <class SolventModule>
|
|
void
|
|
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
|
|
{
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const auto& solventPvt = SolventModule::solventPvt();
|
|
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
coeff = 1.0 / bs;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Fluid property object.
|
|
*/
|
|
const PhaseUsage phaseUsage_;
|
|
|
|
/**
|
|
* "Fluid-in-place" region mapping (forward and reverse).
|
|
*/
|
|
const RegionMapping<Region> rmap_;
|
|
|
|
/**
|
|
* Derived property attributes for each active region.
|
|
*/
|
|
struct Attributes {
|
|
Attributes()
|
|
: pressure (0.0)
|
|
, temperature(0.0)
|
|
, rs(0.0)
|
|
, rv(0.0)
|
|
, pv(0.0)
|
|
{}
|
|
|
|
double pressure;
|
|
double temperature;
|
|
double rs;
|
|
double rv;
|
|
double pv;
|
|
};
|
|
|
|
Details::RegionAttributes<RegionId, Attributes> attr_;
|
|
|
|
|
|
/**
|
|
* Compute average hydrocarbon pressure and temperatures in all
|
|
* regions.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
* \param[in] info The information and communication utilities
|
|
* about/of the parallelization.
|
|
* \param[in] ownership In a parallel run this is vector containing
|
|
* 1 for every owned unknown, zero otherwise.
|
|
* Not used in a sequential run.
|
|
* \tparam is_parallel True if the run is parallel. In this case
|
|
* info has to contain a ParallelISTLInformation
|
|
* object.
|
|
*/
|
|
template<bool is_parallel>
|
|
void
|
|
calcAverages(const BlackoilState& state, const boost::any& info,
|
|
const std::vector<double>& ownerShip)
|
|
{
|
|
const auto& press = state.pressure();
|
|
const auto& temp = state.temperature();
|
|
const auto& Rv = state.rv();
|
|
const auto& Rs = state.gasoilratio();
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
auto& p = ra.pressure;
|
|
auto& T = ra.temperature;
|
|
auto& rs = ra.rs;
|
|
auto& rv = ra.rv;
|
|
|
|
std::size_t n = 0;
|
|
p = T = 0.0;
|
|
for (const auto& cell : rmap_.cells(reg)) {
|
|
auto increment = Details::
|
|
AverageIncrementCalculator<is_parallel>()(press, temp, Rs, Rv,
|
|
ownerShip,
|
|
cell);
|
|
p += std::get<0>(increment);
|
|
T += std::get<1>(increment);
|
|
rs += std::get<2>(increment);
|
|
rv += std::get<3>(increment);
|
|
n += std::get<4>(increment);
|
|
}
|
|
std::size_t global_n = n;
|
|
double global_p = p;
|
|
double global_T = T;
|
|
double global_rs = rs;
|
|
double global_rv = rv;
|
|
#if HAVE_MPI
|
|
if ( is_parallel )
|
|
{
|
|
const auto& real_info = boost::any_cast<const ParallelISTLInformation&>(info);
|
|
global_n = real_info.communicator().sum(n);
|
|
global_p = real_info.communicator().sum(p);
|
|
global_rs = real_info.communicator().sum(rs);
|
|
global_rv = real_info.communicator().sum(rv);
|
|
global_T = real_info.communicator().sum(T);
|
|
}
|
|
#endif
|
|
p = global_p / global_n;
|
|
rs = global_rs / global_n;
|
|
rv = global_rv / global_n;
|
|
T = global_T / global_n;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
};
|
|
} // namespace RateConverter
|
|
} // namespace Opm
|
|
|
|
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */
|