opm-simulators/flowexperimental/flowexp.hpp
2024-04-23 11:39:49 +02:00

258 lines
9.5 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief The common settings for all flowexp variants.
*/
#ifndef FLOW_EXP_HPP
#define FLOW_EXP_HPP
#include <opm/simulators/flow/FlowProblem.hpp>
#include <opm/simulators/flow/FlowProblemProperties.hpp>
#include <opm/models/utils/start.hh>
#include <opm/models/discretization/common/fvbaseproblem.hh>
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
#include <opm/simulators/linalg/ISTLSolver.hpp>
#include <opm/simulators/timestepping/EclTimeSteppingParams.hpp>
#include <opm/simulators/wells/BlackoilWellModel.hpp>
namespace Opm {
template <class TypeTag>
class FlowExpProblem;
}
namespace Opm::Properties {
namespace TTag {
struct FlowExpTypeTag {
using InheritsFrom = std::tuple<FlowModelParameters, FlowBaseProblem, BlackOilModel, EclTimeSteppingParameters>;
};
}
// Set the problem class
template<class TypeTag>
struct Problem<TypeTag, TTag::FlowExpTypeTag> {
using type = FlowExpProblem<TypeTag>;
};
// Enable experimental features for flowexp: flowexp is the research simulator of the OPM
// project. If you're looking for a more stable "production quality" simulator, consider
// using `flow`
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = true;
};
// use flow's well model for now
template<class TypeTag>
struct WellModel<TypeTag, TTag::FlowExpTypeTag> {
using type = BlackoilWellModel<TypeTag>;
};
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::FlowExpTypeTag> {
using type = FlowExpNewtonMethod<TypeTag>;
};
// currently, flowexp uses the non-multisegment well model by default to avoid
// regressions. the --use-multisegment-well=true|false command line parameter is still
// available in flowexp, but hidden from view.
template<class TypeTag>
struct UseMultisegmentWell<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = false;
};
// set some properties that are only required by the well model
template<class TypeTag>
struct MatrixAddWellContributions<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = true;
};
template<class TypeTag>
struct EnableTerminalOutput<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = false;
};
// flow's well model only works with surface volumes
template<class TypeTag>
struct BlackoilConserveSurfaceVolume<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = true;
};
// the values for the residual are for the whole cell instead of for a cubic meter of the cell
template<class TypeTag>
struct UseVolumetricResidual<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = false;
};
// by default use flow's aquifer model for now
template<class TypeTag>
struct AquiferModel<TypeTag, TTag::FlowExpTypeTag> {
using type = BlackoilAquiferModel<TypeTag>;
};
// use flow's linear solver backend for now
template<class TypeTag>
struct LinearSolverSplice<TypeTag, TTag::FlowExpTypeTag> {
using type = TTag::FlowIstlSolver;
};
template<>
struct LinearSolverBackend<TTag::FlowExpTypeTag, TTag::FlowIstlSolverParams> {
using type = ISTLSolver<TTag::FlowExpTypeTag>;
};
// the default for the allowed volumetric error for oil per second
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::FlowExpTypeTag> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-1;
};
// set fraction of the pore volume where the volumetric residual may be violated during
// strict Newton iterations
template<class TypeTag>
struct EclNewtonRelaxedVolumeFraction<TypeTag, TTag::FlowExpTypeTag> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.05;
};
// the maximum volumetric error of a cell in the relaxed region
template<class TypeTag>
struct EclNewtonRelaxedTolerance<TypeTag, TTag::FlowExpTypeTag> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e6*getPropValue<TypeTag, Properties::NewtonTolerance>();
};
// the tolerated amount of "incorrect" amount of oil per time step for the complete
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
// will tolerate larger residuals.
template<class TypeTag>
struct EclNewtonSumTolerance<TypeTag, TTag::FlowExpTypeTag> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-5;
};
template<class TypeTag>
struct EclNewtonSumToleranceExponent<TypeTag, TTag::FlowExpTypeTag> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1./3.;
};
// make all Newton iterations strict, i.e., the volumetric Newton tolerance must be
// always be upheld in the majority of the spatial domain. In this context, "majority"
// means 1 - EclNewtonRelaxedVolumeFraction.
template<class TypeTag>
struct EclNewtonStrictIterations<TypeTag, TTag::FlowExpTypeTag> {
static constexpr int value = 100;
};
// set the maximum number of Newton iterations to 8 so that we fail quickly (albeit
// relatively often)
template<class TypeTag>
struct NewtonMaxIterations<TypeTag, TTag::FlowExpTypeTag> {
static constexpr int value = 8;
};
// if openMP is available, set the default the number of threads per process for the main
// simulation to 2 (instead of grabbing everything that is available).
#if _OPENMP
template<class TypeTag>
struct ThreadsPerProcess<TypeTag, TTag::FlowExpTypeTag> {
static constexpr int value = 2;
};
#endif
// By default, flowexp accepts the result of the time integration unconditionally if the
// smallest time step size is reached.
template<class TypeTag>
struct ContinueOnConvergenceError<TypeTag, TTag::FlowExpTypeTag> {
static constexpr bool value = true;
};
template<class TypeTag>
struct LinearSolverBackend<TypeTag, TTag::FlowExpTypeTag> {
using type = ISTLSolver<TypeTag>;
};
} // namespace Opm::Properties
namespace Opm {
template <class TypeTag>
class FlowExpProblem : public FlowProblem<TypeTag> //, public FvBaseProblem<TypeTag>
{
typedef FlowProblem<TypeTag> ParentType;
using BaseType = ParentType; // GetPropType<TypeTag, Properties::BaseProblem>;
public:
void writeOutput(bool verbose = true)
{
OPM_TIMEBLOCK(problemWriteOutput);
// use the generic code to prepare the output fields and to
// write the desired VTK files.
if (Parameters::get<TypeTag, Properties::EnableWriteAllSolutions>() || this->simulator().episodeWillBeOver()) {
// \Note: the SimulatorTimer does not carry any useful information, so PRT file (if it gets output) will contain wrong
// timing information.
BaseType::writeOutput(SimulatorTimer{}, verbose);
}
}
static void registerParameters()
{
ParentType::registerParameters();
BlackoilModelParameters<TypeTag>::registerParameters();
Parameters::registerParam<TypeTag, Properties::EnableTerminalOutput>("Do *NOT* use!");
Parameters::hideParam<TypeTag, Properties::DbhpMaxRel>();
Parameters::hideParam<TypeTag, Properties::DwellFractionMax>();
Parameters::hideParam<TypeTag, Properties::MaxResidualAllowed>();
Parameters::hideParam<TypeTag, Properties::ToleranceMb>();
Parameters::hideParam<TypeTag, Properties::ToleranceMbRelaxed>();
Parameters::hideParam<TypeTag, Properties::ToleranceCnv>();
Parameters::hideParam<TypeTag, Properties::ToleranceCnvRelaxed>();
Parameters::hideParam<TypeTag, Properties::ToleranceWells>();
Parameters::hideParam<TypeTag, Properties::ToleranceWellControl>();
Parameters::hideParam<TypeTag, Properties::MaxWelleqIter>();
Parameters::hideParam<TypeTag, Properties::UseMultisegmentWell>();
Parameters::hideParam<TypeTag, Properties::TolerancePressureMsWells>();
Parameters::hideParam<TypeTag, Properties::MaxPressureChangeMsWells>();
Parameters::hideParam<TypeTag, Properties::MaxInnerIterMsWells>();
Parameters::hideParam<TypeTag, Properties::MaxNewtonIterationsWithInnerWellIterations>();
Parameters::hideParam<TypeTag, Properties::MaxInnerIterWells>();
Parameters::hideParam<TypeTag, Properties::MaxSinglePrecisionDays>();
Parameters::hideParam<TypeTag, Properties::MinStrictCnvIter>();
Parameters::hideParam<TypeTag, Properties::MinStrictMbIter>();
Parameters::hideParam<TypeTag, Properties::SolveWelleqInitially>();
Parameters::hideParam<TypeTag, Properties::UpdateEquationsScaling>();
Parameters::hideParam<TypeTag, Properties::UseUpdateStabilization>();
Parameters::hideParam<TypeTag, Properties::MatrixAddWellContributions>();
Parameters::hideParam<TypeTag, Properties::EnableTerminalOutput>();
}
// inherit the constructors
using ParentType::FlowProblem;
};
}
#endif