opm-simulators/examples/tutorial1problem.hh
Andreas Lauser 8e0e9e9d31 rename "(Volume|Flux)Variables" to "(In|Ex)tensiveQuantities"
"intensive" means that the value of these quantities at a given
spatial location does not depend on any value of the neighboring
intensive quantities. In contrast, "extensive" quantities depend in
the intensive quantities of the environment of the spatial location.

this change is necessary is because the previous nomenclature was very
specific to finite volume discretizations, but the models themselves
were already rather generic. (i.e., "volume variables" are the
intensive quantities of finite volume methods and "flux variables"
are the extensive ones.)
2014-06-24 18:24:09 +02:00

298 lines
12 KiB
C++

/*
Copyright (C) 2009-2013 by Andreas Lauser
Copyright (C) 2010 by Benjamin Faigle
Copyright (C) 2010 by Klaus Mosthaf
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::Tutorial1Problem
*/
#ifndef EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian1}@*/
#define EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian2}@*/
// The numerical model
#include <ewoms/models/immiscible/immisciblemodel.hh>
// The spatial discretization (VCFV == Vertex-Centered Finite Volumes)
#include <ewoms/disc/vcfv/vcfvdiscretization.hh> /*@\label{tutorial1:include-discretization}@*/
// The chemical species that are used
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Lnapl.hpp>
// Headers required for the capillary pressure law
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp> /*@\label{tutorial1:rawLawInclude}@*/
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
// For the DUNE grid
#include <dune/grid/yaspgrid.hh> /*@\label{tutorial1:include-grid-manager}@*/
#include <ewoms/io/cubegridmanager.hh> /*@\label{tutorial1:include-grid-manager}@*/
// For Dune::FieldMatrix
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
namespace Ewoms {
// forward declaration of the problem class
template <class TypeTag>
class Tutorial1Problem;
}
namespace Opm {
namespace Properties {
// Create a new type tag for the problem
NEW_TYPE_TAG(Tutorial1Problem, INHERITS_FROM(ImmiscibleTwoPhaseModel)); /*@\label{tutorial1:create-type-tag}@*/
// Select the vertex centered finite volume method as spatial discretization
SET_TAG_PROP(Tutorial1Problem, SpatialDiscretizationSplice,
VcfvDiscretization); /*@\label{tutorial1:set-spatial-discretization}@*/
// Set the "Problem" property
SET_TYPE_PROP(Tutorial1Problem, Problem,
Ewoms::Tutorial1Problem<TypeTag>); /*@\label{tutorial1:set-problem}@*/
// Set grid and the grid manager to be used
SET_TYPE_PROP(Tutorial1Problem, Grid, Dune::YaspGrid</*dim=*/2>); /*@\label{tutorial1:set-grid}@*/
SET_TYPE_PROP(Tutorial1Problem, GridManager, Ewoms::CubeGridManager<TypeTag>); /*@\label{tutorial1:set-grid-manager}@*/
// Set the wetting phase /*@\label{tutorial1:2p-system-start}@*/
SET_TYPE_PROP(Tutorial1Problem,
WettingPhase, /*@\label{tutorial1:wettingPhase}@*/
Opm::LiquidPhase<typename GET_PROP_TYPE(TypeTag, Scalar),
Opm::SimpleH2O<typename GET_PROP_TYPE(TypeTag, Scalar)> >);
// Set the non-wetting phase
SET_TYPE_PROP(Tutorial1Problem,
NonwettingPhase, /*@\label{tutorial1:nonwettingPhase}@*/
Opm::LiquidPhase<typename GET_PROP_TYPE(TypeTag, Scalar),
Opm::LNAPL<typename GET_PROP_TYPE(TypeTag, Scalar)> >); /*@\label{tutorial1:2p-system-end}@*/
// Set the material law
SET_PROP(Tutorial1Problem, MaterialLaw)
{
private:
// create a class holding the necessary information for a
// two-phase capillary pressure law
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef Opm::TwoPhaseMaterialTraits<Scalar, wettingPhaseIdx, nonWettingPhaseIdx> Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedBrooksCorey<Traits> RawMaterialLaw; /*@\label{tutorial1:rawlaw}@*/
public:
// Convert absolute saturations into effective ones before passing
// it to the base capillary pressure law
typedef Opm::EffToAbsLaw<RawMaterialLaw> type; /*@\label{tutorial1:eff2abs}@*/
};
// Disable gravity
SET_BOOL_PROP(Tutorial1Problem, EnableGravity, false); /*@\label{tutorial1:gravity}@*/
// define how long the simulation should run [s]
SET_SCALAR_PROP(Tutorial1Problem, EndTime, 100e3); /*@\label{tutorial1:default-params-begin}@*/
// define the size of the initial time step [s]
SET_SCALAR_PROP(Tutorial1Problem, InitialTimeStepSize, 125.0);
// define the physical size of the problem's domain [m]
SET_SCALAR_PROP(Tutorial1Problem, DomainSizeX, 300.0); /*@\label{tutorial1:grid-default-params-begin}@*/
SET_SCALAR_PROP(Tutorial1Problem, DomainSizeY, 60.0);
SET_SCALAR_PROP(Tutorial1Problem, DomainSizeZ, 0.0);
// // define the number of cells used for discretizing the physical domain
SET_INT_PROP(Tutorial1Problem, CellsX, 100);
SET_INT_PROP(Tutorial1Problem, CellsY, 1);
SET_INT_PROP(Tutorial1Problem, CellsZ, 1); /*@\label{tutorial1:default-params-end}@*/
} // namespace Properties
} // namespace Opm
namespace Ewoms {
//! Tutorial problem using the "immiscible" model.
template <class TypeTag>
class Tutorial1Problem
: public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial1:def-problem}@*/
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
// Grid dimension
enum { dimWorld = GridView::dimensionworld };
// The type of the intrinsic permeability tensor
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
// eWoms specific types are specified via the property system
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial1:matLawObjectType}@*/
// phase indices
enum { numPhases = FluidSystem::numPhases };
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
// Indices of the conservation equations
enum { contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx };
enum { contiNonWettingEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx };
public:
//! The constructor of the problem
Tutorial1Problem(Simulator &simulator)
: ParentType(simulator)
, eps_(3e-6)
{
// Use an isotropic and homogeneous intrinsic permeability
K_ = this->toDimMatrix_(1e-7);
// Parameters of the Brooks-Corey law
materialParams_.setEntryPressure(500.0 /*Pa*/); /*@\label{tutorial1:setLawParams}@*/
materialParams_.setLambda(2); // shape parameter
// Set the residual saturations
materialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
materialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
// wrap up the initialization of the material law's parameters
materialParams_.finalize();
}
//! Specifies the problem name. This is used for files generated by the simulation.
std::string name() const
{ return "tutorial1"; }
//! Returns the temperature at a given position.
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return 283.15; }
//! Returns the intrinsic permeability tensor [m^2] at a position.
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial1:permeability}@*/
int spaceIdx, int timeIdx) const
{ return K_; }
//! Defines the porosity [-] of the medium at a given position
template <class Context>
Scalar porosity(const Context &context,
int spaceIdx, int timeIdx) const /*@\label{tutorial1:porosity}@*/
{ return 0.2; }
//! Returns the parameter object for the material law at a given position
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context, /*@\label{tutorial1:matLawParams}@*/
int spaceIdx, int timeIdx) const
{ return materialParams_; }
//! Evaluates the boundary conditions.
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (pos[0] < eps_) {
// Free-flow conditions on left boundary
const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
Scalar Sw = 1.0;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, materialParams, fs);
fs.setPressure(wettingPhaseIdx, 200e3);
fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (pos[0] > this->boundingBoxMax()[0] - eps_) {
// forced outflow at the right boundary
RateVector massRate(0.0);
massRate[contiWettingEqIdx] = 0.0; // [kg / (s m^2)]
massRate[contiNonWettingEqIdx] = 3e-2; // [kg / (s m^2)]
values.setMassRate(massRate);
}
else // no flow at the remaining boundaries
values.setNoFlow();
}
//! Evaluates the source term for all conserved quantities at a given
//! position of the domain [kg/(m^3 * s)]. Positive values mean that
//! mass is created.
template <class Context>
void source(RateVector &source, const Context &context, int spaceIdx,
int timeIdx) const
{
source[contiWettingEqIdx] = 0.0;
source[contiNonWettingEqIdx] = 0.0;
}
//! Evaluates the initial value at a given position in the domain.
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
int timeIdx) const
{
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
// the domain is initially fully saturated by LNAPL
Scalar Sw = 0.0;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
// the temperature is given by the temperature() method
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
// set pressure of the wetting phase to 200 kPa = 2 bar
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx,
timeIdx),
fs);
fs.setPressure(wettingPhaseIdx, 200e3);
fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]);
values.assignNaive(fs);
}
private:
DimMatrix K_;
// Object that holds the parameters of required by the capillary pressure law.
MaterialLawParams materialParams_; /*@\label{tutorial1:matParamsObject}@*/
// small epsilon value
Scalar eps_;
};
} // namespace Ewoms
#endif