opm-simulators/opm/polymer/SimulatorCompressiblePolymer.cpp
2018-02-10 08:33:33 +01:00

606 lines
26 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/polymer/SimulatorCompressiblePolymer.hpp>
#include <opm/common/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/polymer/CompressibleTpfaPolymer.hpp>
#include <opm/grid/UnstructuredGrid.h>
#include <opm/core/wells.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/grid/utility/StopWatch.hpp>
#include <opm/core/utility/DataMap.hpp>
#include <opm/simulators/vtk/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/grid/ColumnExtract.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/TransportSolverTwophaseCompressiblePolymer.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/polymerUtilities.hpp>
#include <opm/simulators/ensureDirectoryExists.hpp>
#include <boost/filesystem.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <numeric>
#include <fstream>
#include <iostream>
namespace Opm
{
namespace
{
void outputStateVtk(const UnstructuredGrid& grid,
const Opm::PolymerBlackoilState& state,
const int step,
const std::string& output_dir);
void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::PolymerBlackoilState& state,
const int step,
const std::string& output_dir);
void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir);
void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir);
} // anonymous namespace
class SimulatorCompressiblePolymer::Impl
{
public:
Impl(const ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const PolymerInflowInterface& polymer_inflow,
LinearSolverInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state);
private:
// Data.
// Parameters for output.
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Parameters for transport solver.
int num_transport_substeps_;
bool use_segregation_split_;
// Observed objects.
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const PolymerProperties& poly_props_;
const RockCompressibility* rock_comp_props_;
WellsManager& wells_manager_;
const Wells* wells_;
const PolymerInflowInterface& polymer_inflow_;
const double* gravity_;
// Solvers
CompressibleTpfaPolymer psolver_;
TransportSolverTwophaseCompressiblePolymer tsolver_;
// Needed by column-based gravity segregation solver.
std::vector< std::vector<int> > columns_;
// Misc. data
std::vector<int> allcells_;
};
SimulatorCompressiblePolymer::SimulatorCompressiblePolymer(const ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const PolymerInflowInterface& polymer_inflow,
LinearSolverInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, poly_props, rock_comp_props,
wells_manager, polymer_inflow, linsolver, gravity));
}
SimulatorReport SimulatorCompressiblePolymer::run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state)
{
return pimpl_->run(timer, state, well_state);
}
SimulatorCompressiblePolymer::Impl::Impl(const ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const PolymerInflowInterface& polymer_inflow,
LinearSolverInterface& linsolver,
const double* gravity)
: grid_(grid),
props_(props),
poly_props_(poly_props),
rock_comp_props_(rock_comp_props),
wells_manager_(wells_manager),
wells_(wells_manager.c_wells()),
polymer_inflow_(polymer_inflow),
gravity_(gravity),
psolver_(grid, props, rock_comp_props, poly_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells()),
tsolver_(grid, props, poly_props,
TransportSolverTwophaseCompressiblePolymer::Bracketing,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30))
{
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
ensureDirectoryExists(output_dir_);
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Transport related init.
TransportSolverTwophaseCompressiblePolymer::SingleCellMethod method;
std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing"));
if (method_string == "Bracketing") {
method = Opm::TransportSolverTwophaseCompressiblePolymer::Bracketing;
} else if (method_string == "Newton") {
method = Opm::TransportSolverTwophaseCompressiblePolymer::Newton;
} else {
OPM_THROW(std::runtime_error, "Unknown method: " << method_string);
}
tsolver_.setPreferredMethod(method);
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
use_segregation_split_ = param.getDefault("use_segregation_split", false);
if (gravity != 0 && use_segregation_split_) {
tsolver_.initGravity(gravity);
extractColumn(grid_, columns_);
}
// Misc init.
const int num_cells = grid.number_of_cells;
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
SimulatorReport SimulatorCompressiblePolymer::Impl::run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src(grid_.number_of_cells);
std::vector<double> polymer_inflow_c(grid_.number_of_cells);
// Initialisation.
std::vector<double> initial_pressure;
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double polymass = computePolymerMass(porevol, state.saturation(), state.getCellData( state.CONCENTRATION ), poly_props_.deadPoreVol());
double polymass_adsorbed = computePolymerAdsorbed(grid_, props_, poly_props_, state, rock_comp_props_);
double init_polymass = polymass + polymass_adsorbed;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
initial_pressure = state.pressure();
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, poly_props_, allcells_,
state.pressure(), state.temperature(), state.surfacevol(), state.saturation(),
state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ) ,
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
// Stop timer and report
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
// Find inflow rate.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], initial_pressure,
state.pressure(), state.temperature(), &initial_porevol[0], &porevol[0],
&transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.surfacevol(),
state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ));
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
double substep_polyinj = 0.0;
double substep_polyprod = 0.0;
Opm::computeInjectedProduced(props_, poly_props_,
state,
transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced,
substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
polyinj += substep_polyinj;
polyprod += substep_polyprod;
if (gravity_ != 0 && use_segregation_split_) {
tsolver_.solveGravity(columns_, stepsize,
state.saturation(), state.surfacevol(),
state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ));
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.getCellData( state.CONCENTRATION ), poly_props_.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(grid_, props_, poly_props_,
state, rock_comp_props_);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance: "
" water(surfvol) oil(surfvol) polymer(kg)\n";
std::cout << " In-place: "
<< std::setw(width) << inplace_surfvol[0]
<< std::setw(width) << inplace_surfvol[1]
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1]
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1]
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1]
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1]
<< std::setw(width) << tot_polyprod << std::endl;
const double balance[3] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1],
init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed };
std::cout << " Initial - inplace + inj - prod: "
<< std::setw(width) << balance[0]
<< std::setw(width) << balance[1]
<< std::setw(width) << balance[2]
<< std::endl;
std::cout << " Relative mass error: "
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
<< std::setw(width) << balance[2]/(init_polymass + tot_polyinj)
<< std::endl;
std::cout.precision(8);
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
if (output_) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = ptime;
report.transport_time = ttime;
report.total_time = total_timer.secsSinceStart();
return report;
}
namespace
{
void outputStateVtk(const UnstructuredGrid& grid,
const Opm::PolymerBlackoilState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/vtk_files";
ensureDirectoryExists(vtkfilename.str());
vtkfilename << "/output-" << std::setw(5) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
OPM_THROW(std::runtime_error, "Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["concentration"] = &state.getCellData( state.CONCENTRATION ) ;
dm["cmax"] = &state.getCellData( state.CMAX ) ;
dm["surfvol"] = &state.surfacevol();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::PolymerBlackoilState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["concentration"] = &state.getCellData( state.CONCENTRATION ) ;
dm["cmax"] = &state.getCellData( state.CMAX ) ;
dm["surfvol"] = &state.surfacevol();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
ensureDirectoryExists(fname.str());
fname << "/" << std::setw(5) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
} // anonymous namespace
} // namespace Opm