mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 01:52:57 -06:00
219 lines
7.9 KiB
C++
219 lines
7.9 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::ImmiscibleBoundaryRateVector
|
|
*/
|
|
#ifndef EWOMS_IMMISCIBLE_BOUNDARY_RATE_VECTOR_HH
|
|
#define EWOMS_IMMISCIBLE_BOUNDARY_RATE_VECTOR_HH
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
|
|
|
#include "immiscibleintensivequantities.hh"
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup ImmiscibleModel
|
|
*
|
|
* \brief Implements a boundary vector for the fully implicit
|
|
* multi-phase model which assumes immiscibility.
|
|
*/
|
|
template <class TypeTag>
|
|
class ImmiscibleBoundaryRateVector : public GetPropType<TypeTag, Properties::RateVector>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::RateVector>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
|
|
|
|
public:
|
|
ImmiscibleBoundaryRateVector()
|
|
: ParentType()
|
|
{}
|
|
|
|
/*!
|
|
* \brief Constructor that assigns all entries to a scalar value.
|
|
*
|
|
* \param value The scalar value to which all components of the
|
|
* boundary rate vector will be set.
|
|
*/
|
|
ImmiscibleBoundaryRateVector(const Evaluation& value)
|
|
: ParentType(value)
|
|
{}
|
|
|
|
/*!
|
|
* \brief Copy constructor
|
|
*
|
|
* \param value The boundary rate vector to be duplicated.
|
|
*/
|
|
ImmiscibleBoundaryRateVector(const ImmiscibleBoundaryRateVector& value) = default;
|
|
|
|
ImmiscibleBoundaryRateVector& operator=(const ImmiscibleBoundaryRateVector& value) = default;
|
|
|
|
/*!
|
|
* \brief Specify a free-flow boundary
|
|
*
|
|
* \param context The execution context for which the boundary rate should
|
|
* be specified.
|
|
* \param bfIdx The local space index of the boundary segment.
|
|
* \param timeIdx The index used by the time discretization.
|
|
* \param fluidState The repesentation of the thermodynamic state
|
|
* of the system on the integration point of the
|
|
* boundary segment.
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setFreeFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState)
|
|
{
|
|
ExtensiveQuantities extQuants;
|
|
extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
|
|
const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
|
|
unsigned focusDofIdx = context.focusDofIndex();
|
|
unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);
|
|
|
|
////////
|
|
// advective fluxes of all components in all phases
|
|
////////
|
|
(*this) = Evaluation(0.0);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
const auto& pBoundary = fluidState.pressure(phaseIdx);
|
|
const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
|
|
|
|
// mass conservation
|
|
Evaluation density;
|
|
if (pBoundary > pInside) {
|
|
if (focusDofIdx == interiorDofIdx)
|
|
density = fluidState.density(phaseIdx);
|
|
else
|
|
density = Opm::getValue(fluidState.density(phaseIdx));
|
|
}
|
|
else if (focusDofIdx == interiorDofIdx)
|
|
density = insideIntQuants.fluidState().density(phaseIdx);
|
|
else
|
|
density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx));
|
|
|
|
Opm::Valgrind::CheckDefined(density);
|
|
Opm::Valgrind::CheckDefined(extQuants.volumeFlux(phaseIdx));
|
|
|
|
(*this)[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*density;
|
|
|
|
// energy conservation
|
|
if (enableEnergy) {
|
|
Evaluation specificEnthalpy;
|
|
if (pBoundary > pInside) {
|
|
if (focusDofIdx == interiorDofIdx)
|
|
specificEnthalpy = fluidState.enthalpy(phaseIdx);
|
|
else
|
|
specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx));
|
|
}
|
|
else if (focusDofIdx == interiorDofIdx)
|
|
specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
|
|
else
|
|
specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));
|
|
|
|
Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
|
|
EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
|
|
}
|
|
}
|
|
|
|
// thermal conduction
|
|
EnergyModule::addToEnthalpyRate(*this, EnergyModule::thermalConductionRate(extQuants));
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0; i < numEq; ++i)
|
|
Opm::Valgrind::CheckDefined((*this)[i]);
|
|
Opm::Valgrind::CheckDefined(*this);
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* \brief Specify an inflow boundary
|
|
*
|
|
* An inflow boundary condition is basically a free flow boundary
|
|
* condition that is not prevented from specifying a flow out of
|
|
* the domain.
|
|
*
|
|
* \copydetails setFreeFlow
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setInFlow(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& fluidState)
|
|
{
|
|
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
|
|
|
|
// we only allow fluxes in the direction opposite to the outer unit normal
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
|
Evaluation& val = this->operator[](eqIdx);
|
|
val = Toolbox::min(0.0, val);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Specify an outflow boundary
|
|
*
|
|
* An outflow boundary condition is basically a free flow boundary
|
|
* condition that is not prevented from specifying a flow into
|
|
* the domain.
|
|
*
|
|
* \copydetails setFreeFlow
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setOutFlow(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& fluidState)
|
|
{
|
|
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
|
|
|
|
// we only allow fluxes in the same direction as the outer unit normal
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
|
Evaluation& val = this->operator[](eqIdx);
|
|
val = Toolbox::max(0.0, val);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Specify a no-flow boundary for all conserved quantities.
|
|
*/
|
|
void setNoFlow()
|
|
{ (*this) = Evaluation(0.0); }
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|