opm-simulators/opm/models/ncp/ncpintensivequantities.hh
2020-06-10 13:49:42 +02:00

246 lines
9.4 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::NcpIntensiveQuantities
*/
#ifndef EWOMS_NCP_INTENSIVE_QUANTITIES_HH
#define EWOMS_NCP_INTENSIVE_QUANTITIES_HH
#include "ncpproperties.hh"
#include <opm/models/common/energymodule.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/constraintsolvers/CompositionFromFugacities.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
/*!
* \ingroup NcpModel
* \ingroup IntensiveQuantities
*
* \brief Contains the quantities which are are constant within a
* finite volume in the compositional multi-phase NCP model.
*/
template <class TypeTag>
class NcpIntensiveQuantities
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
, public DiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
, public EnergyIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>() >
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
{
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { fugacity0Idx = Indices::fugacity0Idx };
enum { saturation0Idx = Indices::saturation0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { dimWorld = GridView::dimensionworld };
using CompositionFromFugacitiesSolver = Opm::CompositionFromFugacities<Scalar, FluidSystem, Evaluation>;
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem, /*storeEnthalpy=*/enableEnergy>;
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using DiffusionIntensiveQuantities = Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
using EnergyIntensiveQuantities = Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy>;
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
public:
NcpIntensiveQuantities()
{}
NcpIntensiveQuantities(const NcpIntensiveQuantities& other) = default;
NcpIntensiveQuantities& operator=(const NcpIntensiveQuantities& other) = default;
/*!
* \brief IntensiveQuantities::update
*/
void update(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
ParentType::checkDefined();
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
// set the phase saturations
Evaluation sumSat = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
const Evaluation& val = priVars.makeEvaluation(saturation0Idx + phaseIdx, timeIdx);
fluidState_.setSaturation(phaseIdx, val);
sumSat += val;
}
fluidState_.setSaturation(numPhases - 1, 1.0 - sumSat);
Opm::Valgrind::CheckDefined(sumSat);
// set the fluid phase temperature
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
// retrieve capillary pressure parameters
const auto& problem = elemCtx.problem();
const MaterialLawParams& materialParams =
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
// calculate capillary pressures
Evaluation capPress[numPhases];
MaterialLaw::capillaryPressures(capPress, materialParams, fluidState_);
// add to the pressure of the first fluid phase
const Evaluation& pressure0 = priVars.makeEvaluation(pressure0Idx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState_.setPressure(phaseIdx, pressure0 + (capPress[phaseIdx] - capPress[0]));
ComponentVector fug;
// retrieve component fugacities
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fug[compIdx] = priVars.makeEvaluation(fugacity0Idx + compIdx, timeIdx);
// calculate phase compositions
const auto *hint = elemCtx.thermodynamicHint(dofIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// initial guess
if (hint) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
// use the hint for the initial mole fraction!
const Evaluation& moleFracIJ = hint->fluidState().moleFraction(phaseIdx, compIdx);
fluidState_.setMoleFraction(phaseIdx, compIdx, moleFracIJ);
}
}
else // !hint
CompositionFromFugacitiesSolver::guessInitial(fluidState_, phaseIdx, fug);
// calculate the phase composition from the component
// fugacities
CompositionFromFugacitiesSolver::solve(fluidState_, paramCache, phaseIdx, fug);
}
// porosity
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
Opm::Valgrind::CheckDefined(porosity_);
// relative permeabilities
MaterialLaw::relativePermeabilities(relativePermeability_, materialParams, fluidState_);
// dynamic viscosities
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// viscosities
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
fluidState_.setViscosity(phaseIdx, mu);
mobility_[phaseIdx] = relativePermeability_[phaseIdx]/mu;
}
// intrinsic permeability
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
// update the quantities specific for the velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
// energy related quantities
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
checkDefined();
}
/*!
* \brief ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \brief ImmiscibleIntensiveQuantities::intrinsicPermeability
*/
const DimMatrix& intrinsicPermeability() const
{ return intrinsicPerm_; }
/*!
* \brief ImmiscibleIntensiveQuantities::relativePermeability
*/
const Evaluation& relativePermeability(unsigned phaseIdx) const
{ return relativePermeability_[phaseIdx]; }
/*!
* \brief ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{ return mobility_[phaseIdx]; }
/*!
* \brief ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
/*!
* \brief IntensiveQuantities::checkDefined
*/
void checkDefined() const
{
#if !defined NDEBUG && HAVE_VALGRIND
ParentType::checkDefined();
Opm::Valgrind::CheckDefined(porosity_);
Opm::Valgrind::CheckDefined(relativePermeability_);
fluidState_.checkDefined();
#endif
}
private:
DimMatrix intrinsicPerm_;
FluidState fluidState_;
Evaluation porosity_;
Evaluation relativePermeability_[numPhases];
Evaluation mobility_[numPhases];
};
} // namespace Opm
#endif