opm-simulators/opm/models/ptflash/flashmodel.hh
2023-11-22 10:25:28 +01:00

304 lines
11 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlashModel
*/
#ifndef OPM_PTFLASH_MODEL_HH
#define OPM_PTFLASH_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "flashproperties.hh"
#include "flashprimaryvariables.hh"
#include "flashlocalresidual.hh"
#include <opm/models/flash/flashratevector.hh>
#include <opm/models/flash/flashboundaryratevector.hh>
#include "flashintensivequantities.hh"
#include <opm/models/flash/flashextensivequantities.hh>
#include "flashindices.hh"
#include "flashnewtonmethod.hh"
#include <opm/models/common/multiphasebasemodel.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkenergymodule.hh>
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/models/io/vtkptflashmodule.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/constraintsolvers/PTFlash.hpp>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class FlashModel;
}
namespace Opm::Properties {
namespace TTag {
//! The type tag for the isothermal single phase problems
struct FlashModel { using InheritsFrom = std::tuple<VtkDiffusion,
VtkEnergy,
VtkComposition,
VtkPTFlash,
MultiPhaseBaseModel>; };
} // namespace TTag
//! Use the FlashLocalResidual function for the flash model
template<class TypeTag>
struct LocalResidual<TypeTag, TTag::FlashModel> { using type = Opm::FlashLocalResidual<TypeTag>; };
//! Use the PT flash specific newton method for the flash model
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::FlashModel> { using type = Opm::FlashNewtonMethod<TypeTag>; };
//! Use the Pt flash solver by default
template<class TypeTag>
struct FlashSolver<TypeTag, TTag::FlashModel>
{ using type = Opm::PTFlash<GetPropType<TypeTag, Properties::Scalar>,
GetPropType<TypeTag, Properties::FluidSystem>>; };
//! Let the flash solver choose its tolerance by default
template<class TypeTag>
struct FlashTolerance<TypeTag, TTag::FlashModel>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.e-12;
};
// Flash solver verbosity
template<class TypeTag>
struct FlashVerbosity<TypeTag, TTag::FlashModel> { static constexpr int value = 0; };
// Flash two-phase method
template<class TypeTag>
struct FlashTwoPhaseMethod<TypeTag, TTag::FlashModel> { static constexpr auto value = "ssi"; };
//! the Model property
template<class TypeTag>
struct Model<TypeTag, TTag::FlashModel> { using type = Opm::FlashModel<TypeTag>; };
//! the PrimaryVariables property
template<class TypeTag>
struct PrimaryVariables<TypeTag, TTag::FlashModel> { using type = Opm::FlashPrimaryVariables<TypeTag>; };
//! the RateVector property
template<class TypeTag>
struct RateVector<TypeTag, TTag::FlashModel> { using type = Opm::FlashRateVector<TypeTag>; };
//! the BoundaryRateVector property
template<class TypeTag>
struct BoundaryRateVector<TypeTag, TTag::FlashModel> { using type = Opm::FlashBoundaryRateVector<TypeTag>; };
//! the IntensiveQuantities property
template<class TypeTag>
struct IntensiveQuantities<TypeTag, TTag::FlashModel> { using type = Opm::FlashIntensiveQuantities<TypeTag>; };
//! the ExtensiveQuantities property
template<class TypeTag>
struct ExtensiveQuantities<TypeTag, TTag::FlashModel> { using type = Opm::FlashExtensiveQuantities<TypeTag>; };
//! The indices required by the flash-baseed isothermal compositional model
template<class TypeTag>
struct Indices<TypeTag, TTag::FlashModel> { using type = Opm::FlashIndices<TypeTag, /*PVIdx=*/0>; };
// The updates of intensive quantities tend to be _very_ expensive for this
// model, so let's try to minimize the number of required ones
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, TTag::FlashModel> { static constexpr bool value = true; };
// since thermodynamic hints are basically free if the cache for intensive quantities is
// enabled, and this model usually shows quite a performance improvment if they are
// enabled, let's enable them by default.
template<class TypeTag>
struct EnableThermodynamicHints<TypeTag, TTag::FlashModel> { static constexpr bool value = true; };
// disable molecular diffusion by default
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::FlashModel> { static constexpr bool value = false; };
//! Disable the energy equation by default
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::FlashModel> { static constexpr bool value = false; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup FlashModel
*
* \brief A compositional multi-phase model based on flash-calculations
*
* This model assumes a flow of \f$M \geq 1\f$ fluid phases
* \f$\alpha\f$, each of which is assumed to be a mixture \f$N \geq
* M\f$ chemical species (denoted by the upper index \f$\kappa\f$).
*
* By default, the standard multi-phase Darcy approach is used to determine
* the velocity, i.e.
* \f[
* \mathbf{v}_\alpha =
* - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
* \left(\mathbf{grad}\, p_\alpha
* - \varrho_{\alpha} \mathbf{g} \right) \;,
* \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* template<class TypeTag>
struct FluxModule<TypeTag, TTag::MyProblemTypeTag> { using type = Opm::ForchheimerFluxModule<TypeTag>; };
* \endcode
*
* The core of the model is the conservation mass of each component by
* means of the equation
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;.
* \f]
*
* To determine the quanties that occur in the equations above, this
* model uses <i>flash calculations</i>. A flash solver starts with
* the total mass or molar mass per volume for each component and,
* calculates the compositions, saturation and pressures of all
* phases at a given temperature. For this the flash solver has to use
* some model assumptions internally. Here a constant pressure, constant temperature,
* two-phase flash calculation method is used.
*
*/
template <class TypeTag>
class FlashModel
: public MultiPhaseBaseModel<TypeTag>
{
using ParentType = MultiPhaseBaseModel<TypeTag>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
public:
explicit FlashModel(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkCompositionModule<TypeTag>::registerParameters();
Opm::VtkPTFlashModule<TypeTag>::registerParameters();
if (enableDiffusion)
Opm::VtkDiffusionModule<TypeTag>::registerParameters();
if (enableEnergy)
Opm::VtkEnergyModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FlashTolerance,
"The maximum tolerance for the flash solver to "
"consider the solution converged");
EWOMS_REGISTER_PARAM(TypeTag, int, FlashVerbosity,
"Flash solver verbosity level");
EWOMS_REGISTER_PARAM(TypeTag, std::string, FlashTwoPhaseMethod,
"Method for solving vapor-liquid composition. Available options include:"
"ssi, newton, ssi+newton");
}
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(unsigned pvIdx) const
{
const std::string& tmp = EnergyModule::primaryVarName(pvIdx);
if (!tmp.empty())
return tmp;
std::ostringstream oss;
if (Indices::z0Idx <= pvIdx && pvIdx < Indices::z0Idx + numComponents - 1)
oss << "z_," << FluidSystem::componentName(/*compIdx=*/pvIdx - Indices::z0Idx);
else if (pvIdx==Indices::pressure0Idx)
oss << "pressure_" << FluidSystem::phaseName(0);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(unsigned eqIdx) const
{
const std::string& tmp = EnergyModule::eqName(eqIdx);
if (!tmp.empty())
return tmp;
std::ostringstream oss;
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx
+ numComponents) {
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
oss << "continuity^" << FluidSystem::componentName(compIdx);
}
else
assert(false);
return oss.str();
}
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which are meaningful for the model
this->addOutputModule(new Opm::VtkCompositionModule<TypeTag>(this->simulator_));
this->addOutputModule(new Opm::VtkPTFlashModule<TypeTag>(this->simulator_));
if (enableDiffusion)
this->addOutputModule(new Opm::VtkDiffusionModule<TypeTag>(this->simulator_));
if (enableEnergy)
this->addOutputModule(new Opm::VtkEnergyModule<TypeTag>(this->simulator_));
}
};
} // namespace Opm
#endif