opm-simulators/tests/test_ghostlastmatrixadapter.cpp

331 lines
11 KiB
C++

/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE PreconditionerTest
#define BOOST_TEST_NO_MAIN
#include <boost/test/unit_test.hpp>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/getQuasiImpesWeights.hpp>
#include <opm/simulators/linalg/WellOperators.hpp>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/unused.hh>
#include <dune/common/parallel/indexset.hh>
#include <dune/common/parallel/plocalindex.hh>
#include <dune/common/parallel/communication.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/schwarz.hh>
class MPIError {
public:
/** @brief Constructor. */
MPIError(std::string s, int e) : errorstring(s), errorcode(e){}
/** @brief The error string. */
std::string errorstring;
/** @brief The mpi error code. */
int errorcode;
};
void MPI_err_handler(MPI_Comm *, int *err_code, ...){
char *err_string=new char[MPI_MAX_ERROR_STRING];
int err_length;
MPI_Error_string(*err_code, err_string, &err_length);
std::string s(err_string, err_length);
std::cerr << "An MPI Error ocurred:"<<std::endl<<s<<std::endl;
delete[] err_string;
throw MPIError(s, *err_code);
}
typedef Dune::OwnerOverlapCopyAttributeSet GridAttributes;
typedef GridAttributes::AttributeSet GridFlag;
typedef Dune::ParallelLocalIndex<GridFlag> LocalIndex;
template<class M, class G, class L, int n>
void setupPattern(int N, M& mat, Dune::ParallelIndexSet<G,L,n>& indices, int overlapStart, int overlapEnd,
int start, int end);
template<class M>
void fillValues(int N, M& mat, int overlapStart, int overlapEnd, int start, int end);
template<class M, class G, class L, class C, int n>
M setupAnisotropic2d(int N, Dune::ParallelIndexSet<G,L,n>& indices,
const C& p, int *nout, typename M::block_type::value_type eps=1.0);
template<class M, class G, class L, int s>
void setupPattern(int N, M& mat, Dune::ParallelIndexSet<G,L,s>& indices, int overlapStart, int overlapEnd,
int start, int end)
{
int n = overlapEnd - overlapStart;
typename M::CreateIterator iter = mat.createbegin();
indices.beginResize();
for(int j=0; j < N; j++)
for(int i=overlapStart; i < overlapEnd; i++, ++iter) {
int global = j*N+i;
GridFlag flag = GridAttributes::owner;
bool isPublic = false;
if((i<start && i > 0) || (i>= end && i < N-1))
flag=GridAttributes::copy;
if(i<start+1 || i>= end-1) {
isPublic = true;
indices.add(global, LocalIndex(iter.index(), flag, isPublic));
}
iter.insert(iter.index());
// i direction
if(i > overlapStart )
// We have a left neighbour
iter.insert(iter.index()-1);
if(i < overlapEnd-1)
// We have a rigt neighbour
iter.insert(iter.index()+1);
// j direction
// Overlap is a dirichlet border, discard neighbours
if(flag != GridAttributes::copy) {
if(j>0)
// lower neighbour
iter.insert(iter.index()-n);
if(j<N-1)
// upper neighbour
iter.insert(iter.index()+n);
}
}
indices.endResize();
}
template<class M, class T>
void fillValues([[maybe_unused]] int N, M& mat, int overlapStart, int overlapEnd, int start, int end, T eps)
{
typedef typename M::block_type Block;
Block dval(0), bone(0), bmone(0), beps(0);
for(typename Block::RowIterator b = dval.begin(); b != dval.end(); ++b)
b->operator[](b.index())=2.0+2.0*eps;
for(typename Block::RowIterator b=bone.begin(); b != bone.end(); ++b)
b->operator[](b.index())=1.0;
for(typename Block::RowIterator b=bmone.begin(); b != bmone.end(); ++b)
b->operator[](b.index())=-1.0;
for(typename Block::RowIterator b=beps.begin(); b != beps.end(); ++b)
b->operator[](b.index())=-eps;
int n = overlapEnd-overlapStart;
typedef typename M::ColIterator ColIterator;
typedef typename M::RowIterator RowIterator;
for (RowIterator i = mat.begin(); i != mat.end(); ++i) {
// calculate coordinate
int y = i.index() / n;
int x = overlapStart + i.index() - y * n;
ColIterator endi = (*i).end();
if(x<start || x >= end) { // || x==0 || x==N-1 || y==0 || y==N-1){
// overlap node is dirichlet border
ColIterator j = (*i).begin();
for(; j.index() < i.index(); ++j)
*j=0;
*j = bone;
for(++j; j != endi; ++j)
*j=0;
}else{
for(ColIterator j = (*i).begin(); j != endi; ++j)
if(j.index() == i.index())
*j=dval;
else if(j.index()+1==i.index() || j.index()-1==i.index())
*j=beps;
else
*j=bmone;
}
}
}
template<class V, class G, class L, int s>
void setBoundary(V& lhs, V& rhs, const G& n, Dune::ParallelIndexSet<G,L,s>& indices)
{
typedef typename Dune::ParallelIndexSet<G,L,s>::const_iterator Iter;
for(Iter i=indices.begin(); i != indices.end(); ++i) {
G x = i->global()/n;
G y = i->global()%n;
if(x==0 || y ==0 || x==n-1 || y==n-1) {
//double h = 1.0 / ((double) (n-1));
lhs[i->local()]=rhs[i->local()]=0; //((double)x)*((double)y)*h*h;
}
}
}
template<class V, class G>
void setBoundary(V& lhs, V& rhs, const G& N)
{
typedef typename V::block_type Block;
typedef typename Block::value_type T;
for(int j=0; j < N; ++j)
for(int i=0; i < N; i++)
if(i==0 || j ==0 || i==N-1 || j==N-1) {
T h = 1.0 / ((double) (N-1));
T x, y;
if(i==N-1)
x=1;
else
x = ((T) i)*h;
if(j==N-1)
y = 1;
else
y = ((T) j)*h;
lhs[j*N+i]=rhs[j*N+i]=0; //x*y;
}
}
template<class M, class G, class L, class C, int s>
M setupAnisotropic2d(int N, Dune::ParallelIndexSet<G,L,s>& indices, const C& p, int *nout, typename M::block_type::value_type eps)
{
int procs=p.size(), rank=p.rank();
typedef M BCRSMat;
// calculate size of local matrix in the distributed direction
int start, end, overlapStart, overlapEnd;
int n = N/procs; // number of unknowns per process
int bigger = N%procs; // number of process with n+1 unknows
// Compute owner region
if(rank<bigger) {
start = rank*(n+1);
end = start+(n+1);
}else{
start = bigger*(n+1) + (rank-bigger) * n;
end = start+n;
}
// Compute overlap region
if(start>0)
overlapStart = start - 1;
else
overlapStart = start;
if(end<N)
overlapEnd = end + 1;
else
overlapEnd = end;
int noKnown = overlapEnd-overlapStart;
*nout = noKnown;
BCRSMat mat(noKnown*N, noKnown*N, noKnown*N*5, BCRSMat::row_wise);
setupPattern(N, mat, indices, overlapStart, overlapEnd, start, end);
fillValues(N, mat, overlapStart, overlapEnd, start, end, eps);
//Dune::printmatrix(std::cout,mat,"aniso 2d","row",9,1); //das hier auf zwei Prozessen ausgeben
return mat;
}
int main(int argc, char** argv)
{
Dune::MPIHelper::instance(argc, argv);
constexpr int BS=2, N=100;
using MatrixBlock = Dune::FieldMatrix<double,BS,BS>;
using BCRSMat = Dune::BCRSMatrix<MatrixBlock>;
using VectorBlock = Dune::FieldVector<double,BS>;
using Vector = Dune::BlockVector<VectorBlock>;
using Communication = Dune::OwnerOverlapCopyCommunication<int>;
using Operator = Dune::OverlappingSchwarzOperator<BCRSMat,Vector,Vector,Communication>;
const auto& ccomm = Dune::MPIHelper::getCommunication();
Communication comm(ccomm);
int n=0;
BCRSMat mat = setupAnisotropic2d<BCRSMat>(N, comm.indexSet(), comm.communicator(), &n, 1);
comm.remoteIndices().template rebuild<false>();
Vector b(mat.N()), x(mat.M());
b=10;
x=100;
setBoundary(x, b, N, comm.indexSet());
Operator op(mat, comm);
Dune::OverlappingSchwarzScalarProduct<Vector,Communication> sp(comm);
using namespace std::string_literals;
Opm::PropertyTree prm;
prm.put("type", "Jac"s);
std::function<Vector()> weights = [&mat]() {
return Opm::Amg::getQuasiImpesWeights<BCRSMat, Vector>(mat, 0, false);
};
auto fullPreconditioner = Opm::PreconditionerFactory<Operator, Communication>::create(op, prm, weights, comm);
Dune::BiCGSTABSolver<Vector> amgBiCGSTAB(op, sp, *fullPreconditioner, 10e-8, 300, (ccomm.rank()==0) ? 2 : 0);
using PreconditionerOperatorType = Opm::GhostLastMatrixAdapter<BCRSMat, Vector, Vector, Communication>;
auto ghostOperator = std::make_unique<PreconditionerOperatorType>(mat, comm);
auto ghostPreconditioner = Opm::PreconditionerFactory<PreconditionerOperatorType, Communication>::create(*ghostOperator, prm, weights, comm);
Dune::BiCGSTABSolver<Vector> amgGhostBiCGSTAB(op, sp, *ghostPreconditioner, 10e-8, 300, (ccomm.rank()==0) ? 2 : 0);
auto x2 = x;
auto b2 = b;
Dune::InverseOperatorResult r;
Dune::Timer timerFull;
amgBiCGSTAB.apply(x,b,r);
auto timeFull = timerFull.elapsed();
Dune::InverseOperatorResult r2;
Dune::Timer timerGhost;
amgGhostBiCGSTAB.apply(x2,b2,r2);
auto timeGhost = timerGhost.elapsed();
for (size_t i = 0; i < x.size(); i++)
for (int j = 0; j < BS; j++)
if (std::abs(x[i][j] - x2[i][j]) > 0.001)
return 1;
if (r.iterations != r2.iterations)
return 1;
if (ccomm.rank() == 0) {
std::cout << "Full preconditioner took " << timeFull << std::endl;
std::cout << "Ghost preconditioner took " << timeGhost << std::endl;
}
return 0;
}