mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-27 04:36:25 -06:00
5854b8a7a1
- adapt to interface change in waterPvt() - add gas + water + disgasw simulator Note - MSW is not supported - EQUIL initialization is not supported
1978 lines
69 KiB
C++
1978 lines
69 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <ebos/equil/initstateequil.hh>
|
|
#include <ebos/equil/equilibrationhelpers.hh>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <opm/grid/CpGrid.hpp>
|
|
#include <opm/grid/utility/RegionMapping.hpp>
|
|
|
|
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/RsvdTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/RvvdTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/RvwvdTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PbvdTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PdvdTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/SaltvdTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/SaltpvdTable.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
|
|
#include <dune/grid/common/mcmgmapper.hh>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <stdexcept>
|
|
|
|
#if HAVE_DUNE_FEM
|
|
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
|
|
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
|
|
#include <ebos/femcpgridcompat.hh>
|
|
#endif
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
#include <dune/alugrid/grid.hh>
|
|
#include <dune/alugrid/3d/gridview.hh>
|
|
#endif // HAVE_DUNE_ALUGRID
|
|
|
|
namespace Opm {
|
|
namespace EQUIL {
|
|
|
|
namespace Details {
|
|
|
|
template <typename CellRange, typename Comm>
|
|
void verticalExtent(const CellRange& cells,
|
|
const std::vector<std::pair<double, double>>& cellZMinMax,
|
|
const Comm& comm,
|
|
std::array<double,2>& span)
|
|
{
|
|
span[0] = std::numeric_limits<double>::max();
|
|
span[1] = std::numeric_limits<double>::lowest();
|
|
|
|
// Define vertical span as
|
|
//
|
|
// [minimum(node depth(cells)), maximum(node depth(cells))]
|
|
//
|
|
// Note: The implementation of 'RK4IVP<>' implicitly
|
|
// imposes the requirement that cell centroids are all
|
|
// within this vertical span. That requirement is not
|
|
// checked.
|
|
for (const auto& cell : cells) {
|
|
if (cellZMinMax[cell].first < span[0]) { span[0] = cellZMinMax[cell].first; }
|
|
if (cellZMinMax[cell].second > span[1]) { span[1] = cellZMinMax[cell].second; }
|
|
}
|
|
span[0] = comm.min(span[0]);
|
|
span[1] = comm.max(span[1]);
|
|
}
|
|
|
|
void subdivisionCentrePoints(const double left,
|
|
const double right,
|
|
const int numIntervals,
|
|
std::vector<std::pair<double, double>>& subdiv)
|
|
{
|
|
const auto h = (right - left) / numIntervals;
|
|
|
|
auto end = left;
|
|
for (auto i = 0*numIntervals; i < numIntervals; ++i) {
|
|
const auto start = end;
|
|
end = left + (i + 1)*h;
|
|
|
|
subdiv.emplace_back((start + end) / 2, h);
|
|
}
|
|
}
|
|
|
|
template <typename CellID>
|
|
std::vector<std::pair<double, double>>
|
|
horizontalSubdivision(const CellID cell,
|
|
const std::pair<double, double> topbot,
|
|
const int numIntervals)
|
|
{
|
|
auto subdiv = std::vector<std::pair<double, double>>{};
|
|
subdiv.reserve(2 * numIntervals);
|
|
|
|
if (topbot.first > topbot.second) {
|
|
throw std::out_of_range {
|
|
"Negative thickness (inverted top/bottom faces) in cell "
|
|
+ std::to_string(cell)
|
|
};
|
|
}
|
|
|
|
subdivisionCentrePoints(topbot.first, topbot.second,
|
|
2*numIntervals, subdiv);
|
|
|
|
return subdiv;
|
|
}
|
|
|
|
template <class Element>
|
|
double cellCenterDepth(const Element& element)
|
|
{
|
|
typedef typename Element::Geometry Geometry;
|
|
static constexpr int zCoord = Element::dimension - 1;
|
|
double zz = 0.0;
|
|
|
|
const Geometry& geometry = element.geometry();
|
|
const int corners = geometry.corners();
|
|
for (int i=0; i < corners; ++i)
|
|
zz += geometry.corner(i)[zCoord];
|
|
|
|
return zz/corners;
|
|
}
|
|
|
|
template <class Element>
|
|
std::pair<double,double> cellZSpan(const Element& element)
|
|
{
|
|
typedef typename Element::Geometry Geometry;
|
|
static constexpr int zCoord = Element::dimension - 1;
|
|
double bot = 0.0;
|
|
double top = 0.0;
|
|
|
|
const Geometry& geometry = element.geometry();
|
|
const int corners = geometry.corners();
|
|
assert(corners == 8);
|
|
for (int i=0; i < 4; ++i)
|
|
bot += geometry.corner(i)[zCoord];
|
|
for (int i=4; i < corners; ++i)
|
|
top += geometry.corner(i)[zCoord];
|
|
|
|
return std::make_pair(bot/4, top/4);
|
|
}
|
|
|
|
template <class Element>
|
|
std::pair<double,double> cellZMinMax(const Element& element)
|
|
{
|
|
typedef typename Element::Geometry Geometry;
|
|
static constexpr int zCoord = Element::dimension - 1;
|
|
const Geometry& geometry = element.geometry();
|
|
const int corners = geometry.corners();
|
|
assert(corners == 8);
|
|
auto min = std::numeric_limits<double>::max();
|
|
auto max = std::numeric_limits<double>::lowest();
|
|
|
|
|
|
for (int i=0; i < corners; ++i) {
|
|
min = std::min(min, geometry.corner(i)[zCoord]);
|
|
max = std::max(max, geometry.corner(i)[zCoord]);
|
|
}
|
|
return std::make_pair(min, max);
|
|
}
|
|
|
|
template<class RHS>
|
|
RK4IVP<RHS>::RK4IVP(const RHS& f,
|
|
const std::array<double,2>& span,
|
|
const double y0,
|
|
const int N)
|
|
: N_(N)
|
|
, span_(span)
|
|
{
|
|
const double h = stepsize();
|
|
const double h2 = h / 2;
|
|
const double h6 = h / 6;
|
|
|
|
y_.reserve(N + 1);
|
|
f_.reserve(N + 1);
|
|
|
|
y_.push_back(y0);
|
|
f_.push_back(f(span_[0], y0));
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
const double x = span_[0] + i*h;
|
|
const double y = y_.back();
|
|
|
|
const double k1 = f_[i];
|
|
const double k2 = f(x + h2, y + h2*k1);
|
|
const double k3 = f(x + h2, y + h2*k2);
|
|
const double k4 = f(x + h, y + h*k3);
|
|
|
|
y_.push_back(y + h6*(k1 + 2*(k2 + k3) + k4));
|
|
f_.push_back(f(x + h, y_.back()));
|
|
}
|
|
|
|
assert (y_.size() == std::vector<double>::size_type(N + 1));
|
|
}
|
|
|
|
template<class RHS>
|
|
double RK4IVP<RHS>::
|
|
operator()(const double x) const
|
|
{
|
|
// Dense output (O(h**3)) according to Shampine
|
|
// (Hermite interpolation)
|
|
const double h = stepsize();
|
|
int i = (x - span_[0]) / h;
|
|
const double t = (x - (span_[0] + i*h)) / h;
|
|
|
|
// Crude handling of evaluation point outside "span_";
|
|
if (i < 0) { i = 0; }
|
|
if (N_ <= i) { i = N_ - 1; }
|
|
|
|
const double y0 = y_[i], y1 = y_[i + 1];
|
|
const double f0 = f_[i], f1 = f_[i + 1];
|
|
|
|
double u = (1 - 2*t) * (y1 - y0);
|
|
u += h * ((t - 1)*f0 + t*f1);
|
|
u *= t * (t - 1);
|
|
u += (1 - t)*y0 + t*y1;
|
|
|
|
return u;
|
|
}
|
|
|
|
template<class RHS>
|
|
double RK4IVP<RHS>::
|
|
stepsize() const
|
|
{
|
|
return (span_[1] - span_[0]) / N_;
|
|
}
|
|
|
|
namespace PhasePressODE {
|
|
|
|
template<class FluidSystem>
|
|
Water<FluidSystem>::
|
|
Water(const double temp,
|
|
const TabulatedFunction& saltVdTable,
|
|
const int pvtRegionIdx,
|
|
const double normGrav)
|
|
: temp_(temp)
|
|
, saltVdTable_(saltVdTable)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, g_(normGrav)
|
|
{
|
|
}
|
|
|
|
template<class FluidSystem>
|
|
double Water<FluidSystem>::
|
|
operator()(const double depth,
|
|
const double press) const
|
|
{
|
|
return this->density(depth, press) * g_;
|
|
}
|
|
|
|
template<class FluidSystem>
|
|
double Water<FluidSystem>::
|
|
density(const double depth,
|
|
const double press) const
|
|
{
|
|
// The initializing algorithm can give depths outside the range due to numerical noise i.e. we extrapolate
|
|
double saltConcentration = saltVdTable_.eval(depth, /*extrapolate=*/true);
|
|
double rho = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, 0.0 /*=Rsw*/, saltConcentration);
|
|
rho *= FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx_);
|
|
return rho;
|
|
}
|
|
|
|
template<class FluidSystem, class RS>
|
|
Oil<FluidSystem,RS>::
|
|
Oil(const double temp,
|
|
const RS& rs,
|
|
const int pvtRegionIdx,
|
|
const double normGrav)
|
|
: temp_(temp)
|
|
, rs_(rs)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, g_(normGrav)
|
|
{
|
|
}
|
|
|
|
template<class FluidSystem, class RS>
|
|
double Oil<FluidSystem,RS>::
|
|
operator()(const double depth,
|
|
const double press) const
|
|
{
|
|
return this->density(depth, press) * g_;
|
|
}
|
|
|
|
template<class FluidSystem, class RS>
|
|
double Oil<FluidSystem,RS>::
|
|
density(const double depth,
|
|
const double press) const
|
|
{
|
|
double rs = 0.0;
|
|
if(FluidSystem::enableDissolvedGas())
|
|
rs = rs_(depth, press, temp_);
|
|
|
|
double bOil = 0.0;
|
|
if (rs >= FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_, temp_, press)) {
|
|
bOil = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
|
|
}
|
|
else {
|
|
bOil = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rs);
|
|
}
|
|
double rho = bOil * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_);
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
rho += rs * bOil * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
|
|
}
|
|
|
|
return rho;
|
|
}
|
|
|
|
template<class FluidSystem, class RV, class RVW>
|
|
Gas<FluidSystem,RV,RVW>::
|
|
Gas(const double temp,
|
|
const RV& rv,
|
|
const RVW& rvw,
|
|
const int pvtRegionIdx,
|
|
const double normGrav)
|
|
: temp_(temp)
|
|
, rv_(rv)
|
|
, rvw_(rvw)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, g_(normGrav)
|
|
{
|
|
}
|
|
|
|
template<class FluidSystem, class RV, class RVW>
|
|
double Gas<FluidSystem,RV,RVW>::
|
|
operator()(const double depth,
|
|
const double press) const
|
|
{
|
|
return this->density(depth, press) * g_;
|
|
}
|
|
|
|
template<class FluidSystem, class RV, class RVW>
|
|
double Gas<FluidSystem,RV,RVW>::
|
|
density(const double depth,
|
|
const double press) const
|
|
{
|
|
double rv = 0.0;
|
|
if (FluidSystem::enableVaporizedOil())
|
|
rv = rv_(depth, press, temp_);
|
|
|
|
double rvw = 0.0;
|
|
if (FluidSystem::enableVaporizedWater())
|
|
rvw = rvw_(depth, press, temp_);
|
|
|
|
double bGas = 0.0;
|
|
|
|
if (FluidSystem::enableVaporizedOil() && FluidSystem::enableVaporizedWater()) {
|
|
if (rv >= FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp_, press)
|
|
&& rvw >= FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_, temp_, press))
|
|
{
|
|
bGas = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
|
|
} else {
|
|
bGas = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rv, rvw);
|
|
}
|
|
double rho = bGas * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
|
|
rho += rv * bGas * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_)
|
|
+ rvw * bGas * FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx_);
|
|
return rho;
|
|
}
|
|
|
|
if (FluidSystem::enableVaporizedOil()){
|
|
if (rv >= FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp_, press)) {
|
|
bGas = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
|
|
} else {
|
|
bGas = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rv, 0.0/*=rvw*/);
|
|
}
|
|
double rho = bGas * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
|
|
rho += rv * bGas * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_);
|
|
return rho;
|
|
}
|
|
|
|
if (FluidSystem::enableVaporizedWater()){
|
|
if (rvw >= FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_, temp_, press)) {
|
|
bGas = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
|
|
}
|
|
else {
|
|
bGas = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, 0.0/*=rv*/, rvw);
|
|
}
|
|
double rho = bGas * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
|
|
rho += rvw * bGas * FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx_);
|
|
return rho;
|
|
}
|
|
|
|
// immiscible gas
|
|
bGas = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, 0.0/*=rv*/, 0.0/*=rvw*/);
|
|
double rho = bGas * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
|
|
|
|
return rho;
|
|
}
|
|
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
template<class ODE>
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureFunction<ODE>::PressureFunction(const ODE& ode,
|
|
const InitCond& ic,
|
|
const int nsample,
|
|
const VSpan& span)
|
|
: initial_(ic)
|
|
{
|
|
this->value_[Direction::Up] = std::make_unique<Distribution>
|
|
(ode, VSpan {{ ic.depth, span[0] }}, ic.pressure, nsample);
|
|
|
|
this->value_[Direction::Down] = std::make_unique<Distribution>
|
|
(ode, VSpan {{ ic.depth, span[1] }}, ic.pressure, nsample);
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
template<class ODE>
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureFunction<ODE>::PressureFunction(const PressureFunction& rhs)
|
|
: initial_(rhs.initial_)
|
|
{
|
|
this->value_[Direction::Up] =
|
|
std::make_unique<Distribution>(*rhs.value_[Direction::Up]);
|
|
|
|
this->value_[Direction::Down] =
|
|
std::make_unique<Distribution>(*rhs.value_[Direction::Down]);
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
template<class ODE>
|
|
typename PressureTable<FluidSystem,Region>::template PressureFunction<ODE>&
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureFunction<ODE>::
|
|
operator=(const PressureFunction& rhs)
|
|
{
|
|
this->initial_ = rhs.initial_;
|
|
|
|
this->value_[Direction::Up] =
|
|
std::make_unique<Distribution>(*rhs.value_[Direction::Up]);
|
|
|
|
this->value_[Direction::Down] =
|
|
std::make_unique<Distribution>(*rhs.value_[Direction::Down]);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
template<class ODE>
|
|
typename PressureTable<FluidSystem,Region>::template PressureFunction<ODE>&
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureFunction<ODE>::
|
|
operator=(PressureFunction&& rhs)
|
|
{
|
|
this->initial_ = rhs.initial_;
|
|
this->value_ = std::move(rhs.value_);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
template<class ODE>
|
|
double
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureFunction<ODE>::
|
|
value(const double depth) const
|
|
{
|
|
if (depth < this->initial_.depth) {
|
|
// Value above initial condition depth.
|
|
return (*this->value_[Direction::Up])(depth);
|
|
}
|
|
else if (depth > this->initial_.depth) {
|
|
// Value below initial condition depth.
|
|
return (*this->value_[Direction::Down])(depth);
|
|
}
|
|
else {
|
|
// Value *at* initial condition depth.
|
|
return this->initial_.pressure;
|
|
}
|
|
}
|
|
|
|
|
|
template<class FluidSystem, class Region>
|
|
template<typename PressFunc>
|
|
void PressureTable<FluidSystem,Region>::
|
|
checkPtr(const PressFunc* phasePress,
|
|
const std::string& phaseName) const
|
|
{
|
|
if (phasePress != nullptr) { return; }
|
|
|
|
throw std::invalid_argument {
|
|
"Phase pressure function for \"" + phaseName
|
|
+ "\" most not be null"
|
|
};
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
typename PressureTable<FluidSystem,Region>::Strategy
|
|
PressureTable<FluidSystem,Region>::
|
|
selectEquilibrationStrategy(const Region& reg) const
|
|
{
|
|
if (reg.datum() > reg.zwoc()) { // Datum in water zone
|
|
return &PressureTable::equil_WOG;
|
|
}
|
|
else if (reg.datum() < reg.zgoc()) { // Datum in gas zone
|
|
return &PressureTable::equil_GOW;
|
|
}
|
|
else { // Datum in oil zone
|
|
return &PressureTable::equil_OWG;
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem,Region>::
|
|
copyInPointers(const PressureTable& rhs)
|
|
{
|
|
if (rhs.oil_ != nullptr) {
|
|
this->oil_ = std::make_unique<OPress>(*rhs.oil_);
|
|
}
|
|
|
|
if (rhs.gas_ != nullptr) {
|
|
this->gas_ = std::make_unique<GPress>(*rhs.gas_);
|
|
}
|
|
|
|
if (rhs.wat_ != nullptr) {
|
|
this->wat_ = std::make_unique<WPress>(*rhs.wat_);
|
|
}
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
PhaseSaturations<MaterialLawManager,FluidSystem,Region,CellID>::
|
|
PhaseSaturations(MaterialLawManager& matLawMgr,
|
|
const std::vector<double>& swatInit)
|
|
: matLawMgr_(matLawMgr)
|
|
, swatInit_ (swatInit)
|
|
{
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
PhaseSaturations<MaterialLawManager,FluidSystem,Region,CellID>::
|
|
PhaseSaturations(const PhaseSaturations& rhs)
|
|
: matLawMgr_(rhs.matLawMgr_)
|
|
, swatInit_ (rhs.swatInit_)
|
|
, sat_ (rhs.sat_)
|
|
, press_ (rhs.press_)
|
|
{
|
|
// Note: We don't need to do anything to the 'fluidState_' here.
|
|
this->setEvaluationPoint(*rhs.evalPt_.position,
|
|
*rhs.evalPt_.region,
|
|
*rhs.evalPt_.ptable);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
const PhaseQuantityValue&
|
|
PhaseSaturations<MaterialLawManager,FluidSystem,Region,CellID>::
|
|
deriveSaturations(const Position& x,
|
|
const Region& reg,
|
|
const PTable& ptable)
|
|
{
|
|
this->setEvaluationPoint(x, reg, ptable);
|
|
this->initializePhaseQuantities();
|
|
|
|
if (ptable.waterActive()) { this->deriveWaterSat(); }
|
|
if (ptable.gasActive()) { this->deriveGasSat(); }
|
|
|
|
if (this->isOverlappingTransition()) {
|
|
this->fixUnphysicalTransition();
|
|
}
|
|
|
|
if (ptable.oilActive()) { this->deriveOilSat(); }
|
|
|
|
this->accountForScaledSaturations();
|
|
|
|
return this->sat_;
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager,FluidSystem,Region,CellID>::
|
|
setEvaluationPoint(const Position& x,
|
|
const Region& reg,
|
|
const PTable& ptable)
|
|
{
|
|
this->evalPt_.position = &x;
|
|
this->evalPt_.region = ®
|
|
this->evalPt_.ptable = &ptable;
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager,FluidSystem,Region,CellID>::
|
|
initializePhaseQuantities()
|
|
{
|
|
this->sat_.reset();
|
|
this->press_.reset();
|
|
|
|
const auto depth = this->evalPt_.position->depth;
|
|
const auto& ptable = *this->evalPt_.ptable;
|
|
|
|
if (ptable.oilActive()) {
|
|
this->press_.oil = ptable.oil(depth);
|
|
}
|
|
|
|
if (ptable.gasActive()) {
|
|
this->press_.gas = ptable.gas(depth);
|
|
}
|
|
|
|
if (ptable.waterActive()) {
|
|
this->press_.water = ptable.water(depth);
|
|
}
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::deriveOilSat()
|
|
{
|
|
this->sat_.oil = 1.0 - this->sat_.water - this->sat_.gas;
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::deriveGasSat()
|
|
{
|
|
auto& sg = this->sat_.gas;
|
|
|
|
const auto isIncr = true; // dPcgo/dSg >= 0 for all Sg.
|
|
|
|
if (this->isConstCapPress(this->gasPos())) {
|
|
// Sharp interface between phases. Can derive phase saturation
|
|
// directly from knowing where 'depth' of evaluation point is
|
|
// relative to depth of O/G contact.
|
|
sg = this->fromDepthTable(this->evalPt_.region->zgoc(),
|
|
this->gasPos(), isIncr);
|
|
}
|
|
else {
|
|
// Capillary pressure curve is non-constant, meaning there is a
|
|
// transition zone between the gas and oil phases. Invert capillary
|
|
// pressure relation
|
|
//
|
|
// Pcgo(Sg) = Pg - Po
|
|
//
|
|
// Note that Pcgo is defined to be (Pg - Po), not (Po - Pg).
|
|
const auto pcgo = this->press_.gas - this->press_.oil;
|
|
|
|
sg = this->invertCapPress(pcgo, this->gasPos(), isIncr);
|
|
}
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::deriveWaterSat()
|
|
{
|
|
auto& sw = this->sat_.water;
|
|
|
|
const auto isIncr = false; // dPcow/dSw <= 0 for all Sw.
|
|
|
|
if (this->isConstCapPress(this->waterPos())) {
|
|
// Sharp interface between phases. Can derive phase saturation
|
|
// directly from knowing where 'depth' of evaluation point is
|
|
// relative to depth of O/W contact.
|
|
sw = this->fromDepthTable(this->evalPt_.region->zwoc(),
|
|
this->waterPos(), isIncr);
|
|
}
|
|
else {
|
|
// Capillary pressure curve is non-constant, meaning there is a
|
|
// transition zone between the oil and water phases. Invert
|
|
// capillary pressure relation
|
|
//
|
|
// Pcow(Sw) = Po - Pw
|
|
//
|
|
// unless the model uses "SWATINIT". In the latter case, pick the
|
|
// saturation directly from the SWATINIT array of the pertinent
|
|
// cell.
|
|
const auto pcow = this->press_.oil - this->press_.water;
|
|
|
|
sw = this->swatInit_.empty()
|
|
? this->invertCapPress(pcow, this->waterPos(), isIncr)
|
|
: this->applySwatInit(pcow);
|
|
}
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
fixUnphysicalTransition()
|
|
{
|
|
auto& sg = this->sat_.gas;
|
|
auto& sw = this->sat_.water;
|
|
|
|
// Overlapping gas/oil and oil/water transition zones can lead to
|
|
// unphysical phase saturations when individual saturations are derived
|
|
// directly from inverting O/G and O/W capillary pressure curves.
|
|
//
|
|
// Recalculate phase saturations using the implied gas/water capillary
|
|
// pressure: Pg - Pw.
|
|
const auto pcgw = this->press_.gas - this->press_.water;
|
|
if (! this->swatInit_.empty()) {
|
|
// Re-scale Pc to reflect imposed sw for vanishing oil phase. This
|
|
// seems consistent with ECLIPSE, but fails to honour SWATINIT in
|
|
// case of non-trivial gas/oil capillary pressure.
|
|
sw = this->applySwatInit(pcgw, sw);
|
|
}
|
|
|
|
sw = satFromSumOfPcs<FluidSystem>
|
|
(this->matLawMgr_, this->waterPos(), this->gasPos(),
|
|
this->evalPt_.position->cell, pcgw);
|
|
sg = 1.0 - sw;
|
|
|
|
this->fluidState_.setSaturation(this->oilPos(), 1.0 - sw - sg);
|
|
this->fluidState_.setSaturation(this->gasPos(), sg);
|
|
this->fluidState_.setSaturation(this->waterPos(), this->evalPt_
|
|
.ptable->waterActive() ? sw : 0.0);
|
|
|
|
// Pcgo = Pg - Po => Po = Pg - Pcgo
|
|
this->computeMaterialLawCapPress();
|
|
this->press_.oil = this->press_.gas - this->materialLawCapPressGasOil();
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
accountForScaledSaturations()
|
|
{
|
|
const auto gasActive = this->evalPt_.ptable->gasActive();
|
|
const auto watActive = this->evalPt_.ptable->waterActive();
|
|
|
|
const auto& scaledDrainageInfo = this->matLawMgr_
|
|
.oilWaterScaledEpsInfoDrainage(this->evalPt_.position->cell);
|
|
|
|
const auto sg = this->sat_.gas;
|
|
const auto sw = this->sat_.water;
|
|
|
|
{
|
|
auto so = 1.0;
|
|
|
|
if (watActive) {
|
|
const auto swu = scaledDrainageInfo.Swu;
|
|
so -= swu;
|
|
|
|
this->fluidState_.setSaturation(this->waterPos(), swu);
|
|
}
|
|
|
|
if (gasActive) {
|
|
const auto sgu = scaledDrainageInfo.Sgu;
|
|
so -= sgu;
|
|
|
|
this->fluidState_.setSaturation(this->gasPos(), sgu);
|
|
}
|
|
|
|
this->fluidState_.setSaturation(this->oilPos(), so);
|
|
}
|
|
|
|
const auto thresholdSat = 1.0e-6;
|
|
if (watActive && ((sw + thresholdSat) > scaledDrainageInfo.Swu)) {
|
|
// Water saturation exceeds maximum possible value. Reset oil phase
|
|
// pressure to that which corresponds to maximum possible water
|
|
// saturation value.
|
|
this->fluidState_.setSaturation(this->waterPos(), scaledDrainageInfo.Swu);
|
|
this->computeMaterialLawCapPress();
|
|
|
|
// Pcow = Po - Pw => Po = Pw + Pcow
|
|
this->press_.oil = this->press_.water + this->materialLawCapPressOilWater();
|
|
}
|
|
else if (gasActive && ((sg + thresholdSat) > scaledDrainageInfo.Sgu)) {
|
|
// Gas saturation exceeds maximum possible value. Reset oil phase
|
|
// pressure to that which corresponds to maximum possible gas
|
|
// saturation value.
|
|
this->fluidState_.setSaturation(this->gasPos(), scaledDrainageInfo.Sgu);
|
|
this->computeMaterialLawCapPress();
|
|
|
|
// Pcgo = Pg - Po => Po = Pg - Pcgo
|
|
this->press_.oil = this->press_.gas - this->materialLawCapPressGasOil();
|
|
}
|
|
|
|
if (gasActive && ((sg - thresholdSat) < scaledDrainageInfo.Sgl)) {
|
|
// Gas saturation less than minimum possible value in cell. Reset
|
|
// gas phase pressure to that which corresponds to minimum possible
|
|
// gas saturation.
|
|
this->fluidState_.setSaturation(this->gasPos(), scaledDrainageInfo.Sgl);
|
|
this->computeMaterialLawCapPress();
|
|
|
|
// Pcgo = Pg - Po => Pg = Po + Pcgo
|
|
this->press_.gas = this->press_.oil + this->materialLawCapPressGasOil();
|
|
}
|
|
|
|
if (watActive && ((sw - thresholdSat) < scaledDrainageInfo.Swl)) {
|
|
// Water saturation less than minimum possible value in cell. Reset
|
|
// water phase pressure to that which corresponds to minimum
|
|
// possible water saturation value.
|
|
this->fluidState_.setSaturation(this->waterPos(), scaledDrainageInfo.Swl);
|
|
this->computeMaterialLawCapPress();
|
|
|
|
// Pcwo = Po - Pw => Pw = Po - Pcow
|
|
this->press_.water = this->press_.oil - this->materialLawCapPressOilWater();
|
|
}
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
applySwatInit(const double pcow)
|
|
{
|
|
return this->applySwatInit(pcow, this->swatInit_[this->evalPt_.position->cell]);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
applySwatInit(const double pcow, const double sw)
|
|
{
|
|
return this->matLawMgr_
|
|
.applySwatinit(this->evalPt_.position->cell, pcow, sw);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
void PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
computeMaterialLawCapPress()
|
|
{
|
|
const auto& matParams = this->matLawMgr_
|
|
.materialLawParams(this->evalPt_.position->cell);
|
|
|
|
this->matLawCapPress_.fill(0.0);
|
|
MaterialLaw::capillaryPressures(this->matLawCapPress_,
|
|
matParams, this->fluidState_);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
materialLawCapPressGasOil() const
|
|
{
|
|
return this->matLawCapPress_[this->oilPos()]
|
|
+ this->matLawCapPress_[this->gasPos()];
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
materialLawCapPressOilWater() const
|
|
{
|
|
return this->matLawCapPress_[this->oilPos()]
|
|
- this->matLawCapPress_[this->waterPos()];
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
bool PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
isConstCapPress(const PhaseIdx phaseIdx) const
|
|
{
|
|
return isConstPc<FluidSystem>
|
|
(this->matLawMgr_, phaseIdx, this->evalPt_.position->cell);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
bool PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
isOverlappingTransition() const
|
|
{
|
|
return this->evalPt_.ptable->gasActive()
|
|
&& this->evalPt_.ptable->waterActive()
|
|
&& ((this->sat_.gas + this->sat_.water) > 1.0);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
fromDepthTable(const double contactdepth,
|
|
const PhaseIdx phasePos,
|
|
const bool isincr) const
|
|
{
|
|
return satFromDepth<FluidSystem>
|
|
(this->matLawMgr_, this->evalPt_.position->depth,
|
|
contactdepth, static_cast<int>(phasePos),
|
|
this->evalPt_.position->cell, isincr);
|
|
}
|
|
|
|
template <class MaterialLawManager, class FluidSystem, class Region, typename CellID>
|
|
double PhaseSaturations<MaterialLawManager, FluidSystem, Region, CellID>::
|
|
invertCapPress(const double pc,
|
|
const PhaseIdx phasePos,
|
|
const bool isincr) const
|
|
{
|
|
return satFromPc<FluidSystem>
|
|
(this->matLawMgr_, static_cast<int>(phasePos),
|
|
this->evalPt_.position->cell, pc, isincr);
|
|
}
|
|
|
|
template<class FluidSystem, class Region>
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureTable(const double gravity,
|
|
const int samplePoints)
|
|
: gravity_(gravity)
|
|
, nsample_(samplePoints)
|
|
{
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureTable(const PressureTable<FluidSystem,Region>& rhs)
|
|
: gravity_(rhs.gravity_)
|
|
, nsample_(rhs.nsample_)
|
|
{
|
|
this->copyInPointers(rhs);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
PressureTable<FluidSystem,Region>::
|
|
PressureTable(PressureTable<FluidSystem,Region>&& rhs)
|
|
: gravity_(rhs.gravity_)
|
|
, nsample_(rhs.nsample_)
|
|
, oil_ (std::move(rhs.oil_))
|
|
, gas_ (std::move(rhs.gas_))
|
|
, wat_ (std::move(rhs.wat_))
|
|
{
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
PressureTable<FluidSystem,Region>&
|
|
PressureTable<FluidSystem,Region>::
|
|
operator=(const PressureTable<FluidSystem,Region>& rhs)
|
|
{
|
|
this->gravity_ = rhs.gravity_;
|
|
this->nsample_ = rhs.nsample_;
|
|
this->copyInPointers(rhs);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
PressureTable<FluidSystem,Region>&
|
|
PressureTable<FluidSystem,Region>::
|
|
operator=(PressureTable<FluidSystem,Region>&& rhs)
|
|
{
|
|
this->gravity_ = rhs.gravity_;
|
|
this->nsample_ = rhs.nsample_;
|
|
|
|
this->oil_ = std::move(rhs.oil_);
|
|
this->gas_ = std::move(rhs.gas_);
|
|
this->wat_ = std::move(rhs.wat_);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem,Region>::
|
|
equilibrate(const Region& reg,
|
|
const VSpan& span)
|
|
{
|
|
// One of the PressureTable::equil_*() member functions.
|
|
auto equil = this->selectEquilibrationStrategy(reg);
|
|
|
|
(this->*equil)(reg, span);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
bool PressureTable<FluidSystem,Region>::
|
|
oilActive() const
|
|
{
|
|
return FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
bool PressureTable<FluidSystem,Region>::
|
|
gasActive() const
|
|
{
|
|
return FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
bool PressureTable<FluidSystem,Region>::
|
|
waterActive() const
|
|
{
|
|
return FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
double PressureTable<FluidSystem,Region>::
|
|
oil(const double depth) const
|
|
{
|
|
this->checkPtr(this->oil_.get(), "OIL");
|
|
|
|
return this->oil_->value(depth);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
double PressureTable<FluidSystem,Region>::
|
|
gas(const double depth) const
|
|
{
|
|
this->checkPtr(this->gas_.get(), "GAS");
|
|
|
|
return this->gas_->value(depth);
|
|
}
|
|
|
|
|
|
template <class FluidSystem, class Region>
|
|
double PressureTable<FluidSystem,Region>::
|
|
water(const double depth) const
|
|
{
|
|
this->checkPtr(this->wat_.get(), "WATER");
|
|
|
|
return this->wat_->value(depth);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem, Region>::
|
|
equil_WOG(const Region& reg, const VSpan& span)
|
|
{
|
|
// Datum depth in water zone. Calculate phase pressure for water first,
|
|
// followed by oil and gas if applicable.
|
|
|
|
if (! this->waterActive()) {
|
|
throw std::invalid_argument {
|
|
"Don't know how to interpret EQUIL datum depth in "
|
|
"WATER zone in model without active water phase"
|
|
};
|
|
}
|
|
|
|
{
|
|
const auto ic = typename WPress::InitCond {
|
|
reg.datum(), reg.pressure()
|
|
};
|
|
|
|
this->makeWatPressure(ic, reg, span);
|
|
}
|
|
|
|
if (this->oilActive()) {
|
|
// Pcow = Po - Pw => Po = Pw + Pcow
|
|
const auto ic = typename OPress::InitCond {
|
|
reg.zwoc(),
|
|
this->water(reg.zwoc()) + reg.pcowWoc()
|
|
};
|
|
|
|
this->makeOilPressure(ic, reg, span);
|
|
}
|
|
|
|
if (this->gasActive() && this->oilActive()) {
|
|
// Pcgo = Pg - Po => Pg = Po + Pcgo
|
|
const auto ic = typename GPress::InitCond {
|
|
reg.zgoc(),
|
|
this->oil(reg.zgoc()) + reg.pcgoGoc()
|
|
};
|
|
|
|
this->makeGasPressure(ic, reg, span);
|
|
} else if (this->gasActive() && !this->oilActive()) {
|
|
// No oil phase set Pg = Pw + Pcgw
|
|
const auto ic = typename GPress::InitCond {
|
|
reg.zwoc(), // The WOC is really the GWC for gas/water cases
|
|
this->water(reg.zwoc()) + reg.pcowWoc() // Pcow(WOC) is really Pcgw(GWC) for gas/water cases
|
|
};
|
|
this->makeGasPressure(ic, reg, span);
|
|
}
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem, Region>::
|
|
equil_GOW(const Region& reg, const VSpan& span)
|
|
{
|
|
// Datum depth in gas zone. Calculate phase pressure for gas first,
|
|
// followed by oil and water if applicable.
|
|
|
|
if (! this->gasActive()) {
|
|
throw std::invalid_argument {
|
|
"Don't know how to interpret EQUIL datum depth in "
|
|
"GAS zone in model without active gas phase"
|
|
};
|
|
}
|
|
|
|
{
|
|
const auto ic = typename GPress::InitCond {
|
|
reg.datum(), reg.pressure()
|
|
};
|
|
|
|
this->makeGasPressure(ic, reg, span);
|
|
}
|
|
|
|
if (this->oilActive()) {
|
|
// Pcgo = Pg - Po => Po = Pg - Pcgo
|
|
const auto ic = typename OPress::InitCond {
|
|
reg.zgoc(),
|
|
this->gas(reg.zgoc()) - reg.pcgoGoc()
|
|
};
|
|
|
|
this->makeOilPressure(ic, reg, span);
|
|
}
|
|
|
|
if (this->waterActive() && this->oilActive()) {
|
|
// Pcow = Po - Pw => Pw = Po - Pcow
|
|
const auto ic = typename WPress::InitCond {
|
|
reg.zwoc(),
|
|
this->oil(reg.zwoc()) - reg.pcowWoc()
|
|
};
|
|
|
|
this->makeWatPressure(ic, reg, span);
|
|
} else if (this->waterActive() && !this->oilActive()) {
|
|
// No oil phase set Pw = Pg - Pcgw
|
|
const auto ic = typename WPress::InitCond {
|
|
reg.zwoc(), // The WOC is really the GWC for gas/water cases
|
|
this->gas(reg.zwoc()) - reg.pcowWoc() // Pcow(WOC) is really Pcgw(GWC) for gas/water cases
|
|
};
|
|
this->makeWatPressure(ic, reg, span);
|
|
}
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem, Region>::
|
|
equil_OWG(const Region& reg, const VSpan& span)
|
|
{
|
|
// Datum depth in gas zone. Calculate phase pressure for gas first,
|
|
// followed by oil and water if applicable.
|
|
|
|
if (! this->oilActive()) {
|
|
throw std::invalid_argument {
|
|
"Don't know how to interpret EQUIL datum depth in "
|
|
"OIL zone in model without active oil phase"
|
|
};
|
|
}
|
|
|
|
{
|
|
const auto ic = typename OPress::InitCond {
|
|
reg.datum(), reg.pressure()
|
|
};
|
|
|
|
this->makeOilPressure(ic, reg, span);
|
|
}
|
|
|
|
if (this->waterActive()) {
|
|
// Pcow = Po - Pw => Pw = Po - Pcow
|
|
const auto ic = typename WPress::InitCond {
|
|
reg.zwoc(),
|
|
this->oil(reg.zwoc()) - reg.pcowWoc()
|
|
};
|
|
|
|
this->makeWatPressure(ic, reg, span);
|
|
}
|
|
|
|
if (this->gasActive()) {
|
|
// Pcgo = Pg - Po => Pg = Po + Pcgo
|
|
const auto ic = typename GPress::InitCond {
|
|
reg.zgoc(),
|
|
this->oil(reg.zgoc()) + reg.pcgoGoc()
|
|
};
|
|
|
|
this->makeGasPressure(ic, reg, span);
|
|
}
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem, Region>::
|
|
makeOilPressure(const typename OPress::InitCond& ic,
|
|
const Region& reg,
|
|
const VSpan& span)
|
|
{
|
|
const auto drho = OilPressODE {
|
|
this->temperature_, reg.dissolutionCalculator(),
|
|
reg.pvtIdx(), this->gravity_
|
|
};
|
|
|
|
this->oil_ = std::make_unique<OPress>(drho, ic, this->nsample_, span);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem, Region>::
|
|
makeGasPressure(const typename GPress::InitCond& ic,
|
|
const Region& reg,
|
|
const VSpan& span)
|
|
{
|
|
const auto drho = GasPressODE {
|
|
this->temperature_, reg.evaporationCalculator(), reg.waterEvaporationCalculator(),
|
|
reg.pvtIdx(), this->gravity_
|
|
};
|
|
|
|
this->gas_ = std::make_unique<GPress>(drho, ic, this->nsample_, span);
|
|
}
|
|
|
|
template <class FluidSystem, class Region>
|
|
void PressureTable<FluidSystem, Region>::
|
|
makeWatPressure(const typename WPress::InitCond& ic,
|
|
const Region& reg,
|
|
const VSpan& span)
|
|
{
|
|
const auto drho = WatPressODE {
|
|
this->temperature_, reg.saltVdTable(), reg.pvtIdx(), this->gravity_
|
|
};
|
|
|
|
this->wat_ = std::make_unique<WPress>(drho, ic, this->nsample_, span);
|
|
}
|
|
|
|
}
|
|
|
|
namespace DeckDependent {
|
|
|
|
std::vector<EquilRecord>
|
|
getEquil(const EclipseState& state)
|
|
{
|
|
const auto& init = state.getInitConfig();
|
|
|
|
if(!init.hasEquil()) {
|
|
throw std::domain_error("Deck does not provide equilibration data.");
|
|
}
|
|
|
|
const auto& equil = init.getEquil();
|
|
return { equil.begin(), equil.end() };
|
|
}
|
|
|
|
template<class GridView>
|
|
std::vector<int>
|
|
equilnum(const EclipseState& eclipseState,
|
|
const GridView& gridview)
|
|
{
|
|
std::vector<int> eqlnum(gridview.size(0), 0);
|
|
|
|
if (eclipseState.fieldProps().has_int("EQLNUM")) {
|
|
const auto& e = eclipseState.fieldProps().get_int("EQLNUM");
|
|
std::transform(e.begin(), e.end(), eqlnum.begin(), [](int n){ return n - 1;});
|
|
}
|
|
|
|
return eqlnum;
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class MaterialLawManager>
|
|
InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
InitialStateComputer(MaterialLawManager& materialLawManager,
|
|
const EclipseState& eclipseState,
|
|
const Grid& grid,
|
|
const GridView& gridView,
|
|
const CartesianIndexMapper& cartMapper,
|
|
const double grav,
|
|
const bool applySwatInit)
|
|
: temperature_(grid.size(/*codim=*/0)),
|
|
saltConcentration_(grid.size(/*codim=*/0)),
|
|
saltSaturation_(grid.size(/*codim=*/0)),
|
|
pp_(FluidSystem::numPhases,
|
|
std::vector<double>(grid.size(/*codim=*/0))),
|
|
sat_(FluidSystem::numPhases,
|
|
std::vector<double>(grid.size(/*codim=*/0))),
|
|
rs_(grid.size(/*codim=*/0)),
|
|
rv_(grid.size(/*codim=*/0)),
|
|
rvw_(grid.size(/*codim=*/0)),
|
|
cartesianIndexMapper_(cartMapper)
|
|
{
|
|
//Check for presence of kw SWATINIT
|
|
if (applySwatInit) {
|
|
if (eclipseState.fieldProps().has_double("SWATINIT")) {
|
|
swatInit_ = eclipseState.fieldProps().get_double("SWATINIT");
|
|
}
|
|
}
|
|
|
|
// Querry cell depth, cell top-bottom.
|
|
// numerical aquifer cells might be specified with different depths.
|
|
const auto& num_aquifers = eclipseState.aquifer().numericalAquifers();
|
|
updateCellProps_(gridView, num_aquifers);
|
|
|
|
// Get the equilibration records.
|
|
const std::vector<EquilRecord> rec = getEquil(eclipseState);
|
|
const auto& tables = eclipseState.getTableManager();
|
|
// Create (inverse) region mapping.
|
|
const RegionMapping<> eqlmap(equilnum(eclipseState, grid));
|
|
const int invalidRegion = -1;
|
|
regionPvtIdx_.resize(rec.size(), invalidRegion);
|
|
setRegionPvtIdx(eclipseState, eqlmap);
|
|
|
|
// Create Rs functions.
|
|
rsFunc_.reserve(rec.size());
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
if (eqlmap.cells(i).empty()) {
|
|
rsFunc_.push_back(std::shared_ptr<Miscibility::RsVD<FluidSystem>>());
|
|
continue;
|
|
}
|
|
const int pvtIdx = regionPvtIdx_[i];
|
|
if (!rec[i].liveOilInitConstantRs()) {
|
|
const TableContainer& rsvdTables = tables.getRsvdTables();
|
|
const TableContainer& pbvdTables = tables.getPbvdTables();
|
|
if (rsvdTables.size() > 0) {
|
|
|
|
const RsvdTable& rsvdTable = rsvdTables.getTable<RsvdTable>(i);
|
|
std::vector<double> depthColumn = rsvdTable.getColumn("DEPTH").vectorCopy();
|
|
std::vector<double> rsColumn = rsvdTable.getColumn("RS").vectorCopy();
|
|
rsFunc_.push_back(std::make_shared<Miscibility::RsVD<FluidSystem>>(pvtIdx,
|
|
depthColumn, rsColumn));
|
|
} else if (pbvdTables.size() > 0) {
|
|
const PbvdTable& pbvdTable = pbvdTables.getTable<PbvdTable>(i);
|
|
std::vector<double> depthColumn = pbvdTable.getColumn("DEPTH").vectorCopy();
|
|
std::vector<double> pbubColumn = pbvdTable.getColumn("PBUB").vectorCopy();
|
|
rsFunc_.push_back(std::make_shared<Miscibility::PBVD<FluidSystem>>(pvtIdx,
|
|
depthColumn, pbubColumn));
|
|
|
|
} else {
|
|
throw std::runtime_error("Cannot initialise: RSVD or PBVD table not available.");
|
|
}
|
|
|
|
}
|
|
else {
|
|
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
|
|
throw std::runtime_error("Cannot initialise: when no explicit RSVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
|
|
}
|
|
const double pContact = rec[i].datumDepthPressure();
|
|
const double TContact = 273.15 + 20; // standard temperature for now
|
|
rsFunc_.push_back(std::make_shared<Miscibility::RsSatAtContact<FluidSystem>>(pvtIdx, pContact, TContact));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rsFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
rvFunc_.reserve(rec.size());
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
if (eqlmap.cells(i).empty()) {
|
|
rvFunc_.push_back(std::shared_ptr<Miscibility::RvVD<FluidSystem>>());
|
|
continue;
|
|
}
|
|
const int pvtIdx = regionPvtIdx_[i];
|
|
if (!rec[i].wetGasInitConstantRv()) {
|
|
const TableContainer& rvvdTables = tables.getRvvdTables();
|
|
const TableContainer& pdvdTables = tables.getPdvdTables();
|
|
|
|
if (rvvdTables.size() > 0) {
|
|
const RvvdTable& rvvdTable = rvvdTables.getTable<RvvdTable>(i);
|
|
std::vector<double> depthColumn = rvvdTable.getColumn("DEPTH").vectorCopy();
|
|
std::vector<double> rvColumn = rvvdTable.getColumn("RV").vectorCopy();
|
|
rvFunc_.push_back(std::make_shared<Miscibility::RvVD<FluidSystem>>(pvtIdx,
|
|
depthColumn, rvColumn));
|
|
} else if (pdvdTables.size() > 0) {
|
|
const PdvdTable& pdvdTable = pdvdTables.getTable<PdvdTable>(i);
|
|
std::vector<double> depthColumn = pdvdTable.getColumn("DEPTH").vectorCopy();
|
|
std::vector<double> pdewColumn = pdvdTable.getColumn("PDEW").vectorCopy();
|
|
rvFunc_.push_back(std::make_shared<Miscibility::PDVD<FluidSystem>>(pvtIdx,
|
|
depthColumn, pdewColumn));
|
|
} else {
|
|
throw std::runtime_error("Cannot initialise: RVVD or PDCD table not available.");
|
|
}
|
|
}
|
|
else {
|
|
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
|
|
throw std::runtime_error(
|
|
"Cannot initialise: when no explicit RVVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
|
|
}
|
|
const double pContact = rec[i].datumDepthPressure() + rec[i].gasOilContactCapillaryPressure();
|
|
const double TContact = 273.15 + 20; // standard temperature for now
|
|
rvFunc_.push_back(std::make_shared<Miscibility::RvSatAtContact<FluidSystem>>(pvtIdx,pContact, TContact));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rvFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
rvwFunc_.reserve(rec.size());
|
|
if (FluidSystem::enableVaporizedWater()) {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
if (eqlmap.cells(i).empty()) {
|
|
rvwFunc_.push_back(std::shared_ptr<Miscibility::RvwVD<FluidSystem>>());
|
|
continue;
|
|
}
|
|
const int pvtIdx = regionPvtIdx_[i];
|
|
if (!rec[i].humidGasInitConstantRvw()) {
|
|
const TableContainer& rvwvdTables = tables.getRvwvdTables();
|
|
|
|
if (rvwvdTables.size() > 0) {
|
|
const RvwvdTable& rvwvdTable = rvwvdTables.getTable<RvwvdTable>(i);
|
|
std::vector<double> depthColumn = rvwvdTable.getColumn("DEPTH").vectorCopy();
|
|
std::vector<double> rvwvdColumn = rvwvdTable.getColumn("RVWVD").vectorCopy();
|
|
rvwFunc_.push_back(std::make_shared<Miscibility::RvwVD<FluidSystem>>(pvtIdx,
|
|
depthColumn, rvwvdColumn));
|
|
} else {
|
|
throw std::runtime_error("Cannot initialise: RVWVD table not available.");
|
|
}
|
|
}
|
|
else {
|
|
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
|
|
throw std::runtime_error(
|
|
"Cannot initialise: when no explicit RVWVD table is given, \n"
|
|
"datum depth must be at the gas-oil-contact. "
|
|
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
|
|
}
|
|
const double pContact = rec[i].datumDepthPressure() + rec[i].gasOilContactCapillaryPressure();
|
|
const double TContact = 273.15 + 20; // standard temperature for now
|
|
rvwFunc_.push_back(std::make_shared<Miscibility::RvwSatAtContact<FluidSystem>>(pvtIdx,pContact, TContact));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < rec.size(); ++i) {
|
|
rvwFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
|
|
}
|
|
}
|
|
|
|
|
|
// EXTRACT the initial temperature
|
|
updateInitialTemperature_(eclipseState);
|
|
|
|
// EXTRACT the initial salt concentration
|
|
updateInitialSaltConcentration_(eclipseState, eqlmap);
|
|
|
|
// EXTRACT the initial salt saturation
|
|
updateInitialSaltSaturation_(eclipseState, eqlmap);
|
|
|
|
// Compute pressures, saturations, rs and rv factors.
|
|
const auto& comm = grid.comm();
|
|
calcPressSatRsRv(eqlmap, rec, materialLawManager, comm, grav);
|
|
|
|
// modify the pressure and saturation for numerical aquifer cells
|
|
applyNumericalAquifers_(gridView, num_aquifers, eclipseState.runspec().co2Storage());
|
|
|
|
// Modify oil pressure in no-oil regions so that the pressures of present phases can
|
|
// be recovered from the oil pressure and capillary relations.
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
updateInitialTemperature_(const EclipseState& eclState)
|
|
{
|
|
this->temperature_ = eclState.fieldProps().get_double("TEMPI");
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class RMap>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
updateInitialSaltConcentration_(const EclipseState& eclState, const RMap& reg)
|
|
{
|
|
const int numEquilReg = rsFunc_.size();
|
|
saltVdTable_.resize(numEquilReg);
|
|
const auto& tables = eclState.getTableManager();
|
|
const TableContainer& saltvdTables = tables.getSaltvdTables();
|
|
|
|
// If no saltvd table is given, we create a trivial table for the density calculations
|
|
if (saltvdTables.empty()) {
|
|
std::vector<double> x = {0.0,1.0};
|
|
std::vector<double> y = {0.0,0.0};
|
|
for (auto& table : this->saltVdTable_) {
|
|
table.setXYContainers(x, y);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < saltvdTables.size(); ++i) {
|
|
const SaltvdTable& saltvdTable = saltvdTables.getTable<SaltvdTable>(i);
|
|
saltVdTable_[i].setXYContainers(saltvdTable.getDepthColumn(), saltvdTable.getSaltColumn());
|
|
|
|
const auto& cells = reg.cells(i);
|
|
for (const auto& cell : cells) {
|
|
const double depth = cellCenterDepth_[cell];
|
|
this->saltConcentration_[cell] = saltVdTable_[i].eval(depth, /*extrapolate=*/true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class RMap>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
updateInitialSaltSaturation_(const EclipseState& eclState, const RMap& reg)
|
|
{
|
|
const int numEquilReg = rsFunc_.size();
|
|
saltpVdTable_.resize(numEquilReg);
|
|
const auto& tables = eclState.getTableManager();
|
|
const TableContainer& saltpvdTables = tables.getSaltpvdTables();
|
|
|
|
for (size_t i = 0; i < saltpvdTables.size(); ++i) {
|
|
const SaltpvdTable& saltpvdTable = saltpvdTables.getTable<SaltpvdTable>(i);
|
|
saltpVdTable_[i].setXYContainers(saltpvdTable.getDepthColumn(), saltpvdTable.getSaltpColumn());
|
|
|
|
const auto& cells = reg.cells(i);
|
|
for (const auto& cell : cells) {
|
|
const double depth = cellCenterDepth_[cell];
|
|
this->saltSaturation_[cell] = saltpVdTable_[i].eval(depth, /*extrapolate=*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
updateCellProps_(const GridView& gridView,
|
|
const NumericalAquifers& aquifer)
|
|
{
|
|
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
|
|
int numElements = gridView.size(/*codim=*/0);
|
|
cellCenterDepth_.resize(numElements);
|
|
cellZSpan_.resize(numElements);
|
|
cellZMinMax_.resize(numElements);
|
|
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
const auto num_aqu_cells = aquifer.allAquiferCells();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const Element& element = *elemIt;
|
|
const unsigned int elemIdx = elemMapper.index(element);
|
|
cellCenterDepth_[elemIdx] = Details::cellCenterDepth(element);
|
|
const auto cartIx = cartesianIndexMapper_.cartesianIndex(elemIdx);
|
|
cellZSpan_[elemIdx] = Details::cellZSpan(element);
|
|
cellZMinMax_[elemIdx] = Details::cellZMinMax(element);
|
|
if (!num_aqu_cells.empty()) {
|
|
const auto search = num_aqu_cells.find(cartIx);
|
|
if (search != num_aqu_cells.end()) {
|
|
const auto* aqu_cell = num_aqu_cells.at(cartIx);
|
|
const double depth_change_num_aqu = aqu_cell->depth - cellCenterDepth_[elemIdx];
|
|
cellCenterDepth_[elemIdx] += depth_change_num_aqu;
|
|
cellZSpan_[elemIdx].first += depth_change_num_aqu;
|
|
cellZSpan_[elemIdx].second += depth_change_num_aqu;
|
|
cellZMinMax_[elemIdx].first += depth_change_num_aqu;
|
|
cellZMinMax_[elemIdx].second += depth_change_num_aqu;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
applyNumericalAquifers_(const GridView& gridView,
|
|
const NumericalAquifers& aquifer,
|
|
const bool co2store)
|
|
{
|
|
const auto num_aqu_cells = aquifer.allAquiferCells();
|
|
if (num_aqu_cells.empty()) return;
|
|
|
|
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const Element& element = *elemIt;
|
|
const unsigned int elemIdx = elemMapper.index(element);
|
|
const auto cartIx = cartesianIndexMapper_.cartesianIndex(elemIdx);
|
|
const auto search = num_aqu_cells.find(cartIx);
|
|
if (search != num_aqu_cells.end()) {
|
|
// numerical aquifer cells are filled with water initially
|
|
// for co2store the oilphase may be used for the brine
|
|
bool co2store_oil_as_brine = co2store && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
|
|
const auto watPos = co2store_oil_as_brine? FluidSystem::oilPhaseIdx : FluidSystem::waterPhaseIdx;
|
|
if (FluidSystem::phaseIsActive(watPos)) {
|
|
this->sat_[watPos][elemIdx] = 1.;
|
|
} else {
|
|
throw std::logic_error { "Water phase has to be active for numerical aquifer case" };
|
|
}
|
|
|
|
const auto oilPos = FluidSystem::oilPhaseIdx;
|
|
if (!co2store && FluidSystem::phaseIsActive(oilPos)) {
|
|
this->sat_[oilPos][elemIdx] = 0.;
|
|
}
|
|
|
|
const auto gasPos = FluidSystem::gasPhaseIdx;
|
|
if (FluidSystem::phaseIsActive(gasPos)) {
|
|
this->sat_[gasPos][elemIdx] = 0.;
|
|
}
|
|
const auto* aqu_cell = num_aqu_cells.at(cartIx);
|
|
const auto msg = fmt::format("FOR AQUIFER CELL AT ({}, {}, {}) OF NUMERICAL "
|
|
"AQUIFER {}, WATER SATURATION IS SET TO BE UNITY",
|
|
aqu_cell->I+1, aqu_cell->J+1, aqu_cell->K+1, aqu_cell->aquifer_id);
|
|
OpmLog::info(msg);
|
|
|
|
// if pressure is specified for numerical aquifers, we use these pressure values
|
|
// for numerical aquifer cells
|
|
if (aqu_cell->init_pressure) {
|
|
const double pres = *(aqu_cell->init_pressure);
|
|
this->pp_[watPos][elemIdx] = pres;
|
|
if (FluidSystem::phaseIsActive(gasPos)) {
|
|
this->pp_[gasPos][elemIdx] = pres;
|
|
}
|
|
if (FluidSystem::phaseIsActive(oilPos)) {
|
|
this->pp_[oilPos][elemIdx] = pres;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class RMap>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
setRegionPvtIdx(const EclipseState& eclState, const RMap& reg)
|
|
{
|
|
const auto& pvtnumData = eclState.fieldProps().get_int("PVTNUM");
|
|
|
|
for (const auto& r : reg.activeRegions()) {
|
|
const auto& cells = reg.cells(r);
|
|
regionPvtIdx_[r] = pvtnumData[*cells.begin()] - 1;
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class RMap, class MaterialLawManager, class Comm>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
calcPressSatRsRv(const RMap& reg,
|
|
const std::vector<EquilRecord>& rec,
|
|
MaterialLawManager& materialLawManager,
|
|
const Comm& comm,
|
|
const double grav)
|
|
{
|
|
using PhaseSat = Details::PhaseSaturations<
|
|
MaterialLawManager, FluidSystem, EquilReg, typename RMap::CellId
|
|
>;
|
|
|
|
auto ptable = Details::PressureTable<FluidSystem, EquilReg>{ grav };
|
|
auto psat = PhaseSat { materialLawManager, this->swatInit_ };
|
|
auto vspan = std::array<double, 2>{};
|
|
|
|
std::vector<int> regionIsEmpty(rec.size(), 0);
|
|
for (size_t r = 0; r < rec.size(); ++r) {
|
|
const auto& cells = reg.cells(r);
|
|
|
|
Details::verticalExtent(cells, cellZMinMax_, comm, vspan);
|
|
|
|
const auto acc = rec[r].initializationTargetAccuracy();
|
|
if (acc > 0) {
|
|
throw std::runtime_error {
|
|
"Cannot initialise model: Positive item 9 is not supported "
|
|
"in EQUIL keyword, record " + std::to_string(r + 1)
|
|
};
|
|
}
|
|
|
|
if (cells.empty()) {
|
|
regionIsEmpty[r] = 1;
|
|
continue;
|
|
}
|
|
|
|
const auto eqreg = EquilReg {
|
|
rec[r], this->rsFunc_[r], this->rvFunc_[r], this->rvwFunc_[r], this->saltVdTable_[r], this->regionPvtIdx_[r]
|
|
};
|
|
|
|
// Ensure gas/oil and oil/water contacts are within the span for the
|
|
// phase pressure calculation.
|
|
vspan[0] = std::min(vspan[0], std::min(eqreg.zgoc(), eqreg.zwoc()));
|
|
vspan[1] = std::max(vspan[1], std::max(eqreg.zgoc(), eqreg.zwoc()));
|
|
|
|
ptable.equilibrate(eqreg, vspan);
|
|
|
|
if (acc == 0) {
|
|
// Centre-point method
|
|
this->equilibrateCellCentres(cells, eqreg, ptable, psat);
|
|
}
|
|
else if (acc < 0) {
|
|
// Horizontal subdivision
|
|
this->equilibrateHorizontal(cells, eqreg, -acc,
|
|
ptable, psat);
|
|
} else {
|
|
// Horizontal subdivision with titled fault blocks
|
|
// the simulator throw a few line above for the acc > 0 case
|
|
// i.e. we should not reach here.
|
|
assert(false);
|
|
}
|
|
}
|
|
comm.min(regionIsEmpty.data(),regionIsEmpty.size());
|
|
if (comm.rank() == 0) {
|
|
for (size_t r = 0; r < rec.size(); ++r) {
|
|
if (regionIsEmpty[r]) //region is empty on all partitions
|
|
OpmLog::warning("Equilibration region " + std::to_string(r + 1)
|
|
+ " has no active cells");
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class CellRange, class EquilibrationMethod>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
cellLoop(const CellRange& cells,
|
|
EquilibrationMethod&& eqmethod)
|
|
{
|
|
const auto oilPos = FluidSystem::oilPhaseIdx;
|
|
const auto gasPos = FluidSystem::gasPhaseIdx;
|
|
const auto watPos = FluidSystem::waterPhaseIdx;
|
|
|
|
const auto oilActive = FluidSystem::phaseIsActive(oilPos);
|
|
const auto gasActive = FluidSystem::phaseIsActive(gasPos);
|
|
const auto watActive = FluidSystem::phaseIsActive(watPos);
|
|
|
|
auto pressures = Details::PhaseQuantityValue{};
|
|
auto saturations = Details::PhaseQuantityValue{};
|
|
auto Rs = 0.0;
|
|
auto Rv = 0.0;
|
|
auto Rvw = 0.0;
|
|
|
|
for (const auto& cell : cells) {
|
|
eqmethod(cell, pressures, saturations, Rs, Rv, Rvw);
|
|
|
|
if (oilActive) {
|
|
this->pp_ [oilPos][cell] = pressures.oil;
|
|
this->sat_[oilPos][cell] = saturations.oil;
|
|
}
|
|
|
|
if (gasActive) {
|
|
this->pp_ [gasPos][cell] = pressures.gas;
|
|
this->sat_[gasPos][cell] = saturations.gas;
|
|
}
|
|
|
|
if (watActive) {
|
|
this->pp_ [watPos][cell] = pressures.water;
|
|
this->sat_[watPos][cell] = saturations.water;
|
|
}
|
|
|
|
if (oilActive && gasActive) {
|
|
this->rs_[cell] = Rs;
|
|
this->rv_[cell] = Rv;
|
|
}
|
|
|
|
if (watActive && gasActive) {
|
|
this->rvw_[cell] = Rvw;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class CellRange, class PressTable, class PhaseSat>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
equilibrateCellCentres(const CellRange& cells,
|
|
const EquilReg& eqreg,
|
|
const PressTable& ptable,
|
|
PhaseSat& psat)
|
|
{
|
|
using CellPos = typename PhaseSat::Position;
|
|
using CellID = std::remove_cv_t<std::remove_reference_t<
|
|
decltype(std::declval<CellPos>().cell)>>;
|
|
this->cellLoop(cells, [this, &eqreg, &ptable, &psat]
|
|
(const CellID cell,
|
|
Details::PhaseQuantityValue& pressures,
|
|
Details::PhaseQuantityValue& saturations,
|
|
double& Rs,
|
|
double& Rv,
|
|
double& Rvw) -> void
|
|
{
|
|
const auto pos = CellPos {
|
|
cell, cellCenterDepth_[cell]
|
|
};
|
|
|
|
saturations = psat.deriveSaturations(pos, eqreg, ptable);
|
|
pressures = psat.correctedPhasePressures();
|
|
|
|
const auto temp = this->temperature_[cell];
|
|
|
|
Rs = eqreg.dissolutionCalculator()
|
|
(pos.depth, pressures.oil, temp, saturations.gas);
|
|
|
|
Rv = eqreg.evaporationCalculator()
|
|
(pos.depth, pressures.gas, temp, saturations.oil);
|
|
|
|
Rvw = eqreg.waterEvaporationCalculator()
|
|
(pos.depth, pressures.gas, temp, saturations.water);
|
|
});
|
|
}
|
|
|
|
template<class FluidSystem,
|
|
class Grid,
|
|
class GridView,
|
|
class ElementMapper,
|
|
class CartesianIndexMapper>
|
|
template<class CellRange, class PressTable, class PhaseSat>
|
|
void InitialStateComputer<FluidSystem,
|
|
Grid,
|
|
GridView,
|
|
ElementMapper,
|
|
CartesianIndexMapper>::
|
|
equilibrateHorizontal(const CellRange& cells,
|
|
const EquilReg& eqreg,
|
|
const int acc,
|
|
const PressTable& ptable,
|
|
PhaseSat& psat)
|
|
{
|
|
using CellPos = typename PhaseSat::Position;
|
|
using CellID = std::remove_cv_t<std::remove_reference_t<
|
|
decltype(std::declval<CellPos>().cell)>>;
|
|
|
|
this->cellLoop(cells, [this, acc, &eqreg, &ptable, &psat]
|
|
(const CellID cell,
|
|
Details::PhaseQuantityValue& pressures,
|
|
Details::PhaseQuantityValue& saturations,
|
|
double& Rs,
|
|
double& Rv,
|
|
double& Rvw) -> void
|
|
{
|
|
pressures .reset();
|
|
saturations.reset();
|
|
|
|
auto totfrac = 0.0;
|
|
for (const auto& [depth, frac] : Details::horizontalSubdivision(cell, cellZSpan_[cell], acc)) {
|
|
const auto pos = CellPos { cell, depth };
|
|
|
|
saturations.axpy(psat.deriveSaturations(pos, eqreg, ptable), frac);
|
|
pressures .axpy(psat.correctedPhasePressures(), frac);
|
|
|
|
totfrac += frac;
|
|
}
|
|
|
|
if (totfrac > 0.) {
|
|
saturations /= totfrac;
|
|
pressures /= totfrac;
|
|
} else {
|
|
// Fall back to centre point method for zero-thickness cells.
|
|
const auto pos = CellPos {
|
|
cell, cellCenterDepth_[cell]
|
|
};
|
|
|
|
saturations = psat.deriveSaturations(pos, eqreg, ptable);
|
|
pressures = psat.correctedPhasePressures();
|
|
}
|
|
|
|
const auto temp = this->temperature_[cell];
|
|
const auto cz = cellCenterDepth_[cell];
|
|
|
|
Rs = eqreg.dissolutionCalculator()
|
|
(cz, pressures.oil, temp, saturations.gas);
|
|
|
|
Rv = eqreg.evaporationCalculator()
|
|
(cz, pressures.gas, temp, saturations.oil);
|
|
|
|
Rvw = eqreg.waterEvaporationCalculator()
|
|
(cz, pressures.gas, temp, saturations.water);
|
|
});
|
|
}
|
|
|
|
#if HAVE_DUNE_FEM
|
|
using GridView = Dune::Fem::GridPart2GridViewImpl<
|
|
Dune::Fem::AdaptiveLeafGridPart<
|
|
Dune::CpGrid,
|
|
Dune::PartitionIteratorType(4),
|
|
false>>;
|
|
#else
|
|
using GridView = Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>;
|
|
#endif
|
|
|
|
using Mapper = Dune::MultipleCodimMultipleGeomTypeMapper<GridView>;
|
|
template class InitialStateComputer<BlackOilFluidSystem<double>,
|
|
Dune::CpGrid,
|
|
GridView,
|
|
Mapper,
|
|
Dune::CartesianIndexMapper<Dune::CpGrid>>;
|
|
|
|
using MatLaw = EclMaterialLawManager<ThreePhaseMaterialTraits<double,0,1,2>>;
|
|
template InitialStateComputer<BlackOilFluidSystem<double>,
|
|
Dune::CpGrid,
|
|
GridView,
|
|
Mapper,
|
|
Dune::CartesianIndexMapper<Dune::CpGrid>>::
|
|
InitialStateComputer(MatLaw&,
|
|
const EclipseState&,
|
|
const Dune::CpGrid&,
|
|
const GridView&,
|
|
const Dune::CartesianIndexMapper<Dune::CpGrid>&,
|
|
const double,
|
|
const bool);
|
|
#if HAVE_DUNE_ALUGRID
|
|
#if HAVE_MPI
|
|
using ALUGridComm = Dune::ALUGridMPIComm;
|
|
#else
|
|
using ALUGridComm = Dune::ALUGridNoComm;
|
|
#endif //HAVE_MPI
|
|
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, ALUGridComm>;
|
|
using ALUGridView = Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN, Dune::PartitionIteratorType(4)>>;
|
|
using ALUGridMapper = Dune::MultipleCodimMultipleGeomTypeMapper<ALUGridView>;
|
|
template class InitialStateComputer<BlackOilFluidSystem<double>,
|
|
ALUGrid3CN,
|
|
ALUGridView,
|
|
ALUGridMapper,
|
|
Dune::CartesianIndexMapper<ALUGrid3CN>>;
|
|
|
|
template InitialStateComputer<BlackOilFluidSystem<double>,
|
|
ALUGrid3CN,
|
|
ALUGridView,
|
|
ALUGridMapper,
|
|
Dune::CartesianIndexMapper<ALUGrid3CN>>::
|
|
InitialStateComputer(MatLaw&,
|
|
const EclipseState&,
|
|
const ALUGrid3CN&,
|
|
const ALUGridView&,
|
|
const Dune::CartesianIndexMapper<ALUGrid3CN>&,
|
|
const double,
|
|
const bool);
|
|
#endif //HAVE_DUNE_ALUGRID
|
|
|
|
|
|
} // namespace DeckDependent
|
|
|
|
namespace Details {
|
|
template class PressureTable<BlackOilFluidSystem<double>,EquilReg>;
|
|
template void verticalExtent<std::vector<int>,
|
|
Dune::CollectiveCommunication<Dune::MPIHelper::MPICommunicator>>(
|
|
const std::vector<int>&,
|
|
const std::vector<std::pair<double,double>>&,
|
|
const Dune::CollectiveCommunication<Dune::MPIHelper::MPICommunicator>&,
|
|
std::array<double,2>&);
|
|
|
|
using MatLaw = EclMaterialLawManager<ThreePhaseMaterialTraits<double,0,1,2>>;
|
|
template class PhaseSaturations<MatLaw,BlackOilFluidSystem<double>,
|
|
EquilReg,size_t>;
|
|
}
|
|
|
|
} // namespace EQUIL
|
|
} // namespace Opm
|