opm-simulators/opm/models/richards/richardsnewtonmethod.hh
2020-06-10 13:49:42 +02:00

160 lines
5.7 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::RichardsNewtonMethod
*/
#ifndef EWOMS_RICHARDS_NEWTON_METHOD_HH
#define EWOMS_RICHARDS_NEWTON_METHOD_HH
#include "richardsproperties.hh"
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/common/fvector.hh>
namespace Opm {
/*!
* \ingroup RichardsModel
*
* \brief A Richards model specific Newton method.
*/
template <class TypeTag>
class RichardsNewtonMethod : public GetPropType<TypeTag, Properties::DiscNewtonMethod>
{
using ParentType = GetPropType<TypeTag, Properties::DiscNewtonMethod>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { pressureWIdx = Indices::pressureWIdx };
enum { numPhases = FluidSystem::numPhases };
enum { liquidPhaseIdx = getPropValue<TypeTag, Properties::LiquidPhaseIndex>() };
enum { gasPhaseIdx = getPropValue<TypeTag, Properties::GasPhaseIndex>() };
using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
public:
RichardsNewtonMethod(Simulator& simulator) : ParentType(simulator)
{}
protected:
friend NewtonMethod<TypeTag>;
friend ParentType;
/*!
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
*/
void updatePrimaryVariables_(unsigned globalDofIdx,
PrimaryVariables& nextValue,
const PrimaryVariables& currentValue,
const EqVector& update,
const EqVector& currentResidual OPM_UNUSED)
{
// normal Newton-Raphson update
nextValue = currentValue;
nextValue -= update;
// do not clamp anything after 4 iterations
if (this->numIterations_ > 4)
return;
const auto& problem = this->simulator_.problem();
// calculate the old wetting phase saturation
const MaterialLawParams& matParams =
problem.materialLawParams(globalDofIdx, /*timeIdx=*/0);
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
// set the temperature
Scalar T = problem.temperature(globalDofIdx, /*timeIdx=*/0);
fs.setTemperature(T);
/////////
// calculate the phase pressures of the previous iteration
/////////
// first, we have to find the minimum capillary pressure
// (i.e. Sw = 0)
fs.setSaturation(liquidPhaseIdx, 1.0);
fs.setSaturation(gasPhaseIdx, 0.0);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fs);
// non-wetting pressure can be larger than the
// reference pressure if the medium is fully
// saturated by the wetting phase
Scalar pWOld = currentValue[pressureWIdx];
Scalar pNOld =
std::max(problem.referencePressure(globalDofIdx, /*timeIdx=*/0),
pWOld + (pC[gasPhaseIdx] - pC[liquidPhaseIdx]));
/////////
// find the saturations of the previous iteration
/////////
fs.setPressure(liquidPhaseIdx, pWOld);
fs.setPressure(gasPhaseIdx, pNOld);
PhaseVector satOld;
MaterialLaw::saturations(satOld, matParams, fs);
satOld[liquidPhaseIdx] = std::max<Scalar>(0.0, satOld[liquidPhaseIdx]);
/////////
// find the wetting phase pressures which
// corrospond to a 20% increase and a 20% decrease
// of the wetting saturation
/////////
fs.setSaturation(liquidPhaseIdx, satOld[liquidPhaseIdx] - 0.2);
fs.setSaturation(gasPhaseIdx, 1.0 - (satOld[liquidPhaseIdx] - 0.2));
MaterialLaw::capillaryPressures(pC, matParams, fs);
Scalar pwMin = pNOld - (pC[gasPhaseIdx] - pC[liquidPhaseIdx]);
fs.setSaturation(liquidPhaseIdx, satOld[liquidPhaseIdx] + 0.2);
fs.setSaturation(gasPhaseIdx, 1.0 - (satOld[liquidPhaseIdx] + 0.2));
MaterialLaw::capillaryPressures(pC, matParams, fs);
Scalar pwMax = pNOld - (pC[gasPhaseIdx] - pC[liquidPhaseIdx]);
/////////
// clamp the result to the minimum and the maximum
// pressures we just calculated
/////////
Scalar pW = nextValue[pressureWIdx];
pW = std::max(pwMin, std::min(pW, pwMax));
nextValue[pressureWIdx] = pW;
}
};
} // namespace Opm
#endif