mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 09:16:27 -06:00
59a82a0a40
This should make things a much more robust, partially because now the linear and the non-linear solvers use the same convergence criterion. Also, this patch includes some collateral indentation improvements.
505 lines
16 KiB
C++
505 lines
16 KiB
C++
/*
|
|
Copyright (C) 2008-2013 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Ewoms::InfiltrationProblem
|
|
*/
|
|
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
|
|
#define EWOMS_INFILTRATION_PROBLEM_HH
|
|
|
|
#include <ewoms/models/pvs/pvsproperties.hh>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/3p/3pParkerVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/3pAdapter.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/heatconduction/Somerton.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class InfiltrationProblem;
|
|
}
|
|
|
|
namespace Opm {
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(InfiltrationBaseProblem);
|
|
|
|
// Set the grid type
|
|
SET_TYPE_PROP(InfiltrationBaseProblem, Grid, Dune::YaspGrid<2>);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(InfiltrationBaseProblem, Problem,
|
|
Ewoms::InfiltrationProblem<TypeTag>);
|
|
|
|
// Set the fluid system
|
|
SET_TYPE_PROP(
|
|
InfiltrationBaseProblem, FluidSystem,
|
|
Opm::FluidSystems::H2OAirMesitylene<typename GET_PROP_TYPE(TypeTag, Scalar)>);
|
|
|
|
// Enable gravity?
|
|
SET_BOOL_PROP(InfiltrationBaseProblem, EnableGravity, true);
|
|
|
|
// Write newton convergence?
|
|
SET_BOOL_PROP(InfiltrationBaseProblem, NewtonWriteConvergence, false);
|
|
|
|
// Maximum tolerated error in the Newton method
|
|
SET_SCALAR_PROP(InfiltrationBaseProblem, NewtonTolerance, 1e-8);
|
|
|
|
// -1 backward differences, 0: central differences, +1: forward differences
|
|
SET_INT_PROP(InfiltrationBaseProblem, NumericDifferenceMethod, 1);
|
|
|
|
// Set the material Law
|
|
SET_PROP(InfiltrationBaseProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
|
|
enum { nPhaseIdx = FluidSystem::nPhaseIdx };
|
|
enum { gPhaseIdx = FluidSystem::gPhaseIdx };
|
|
|
|
// define the three-phase material law
|
|
typedef Opm::ThreePParkerVanGenuchten<Scalar> ThreePLaw;
|
|
|
|
public:
|
|
// wrap the three-phase law in an adaptor to make use the generic
|
|
// material law API
|
|
typedef Opm::ThreePAdapter<wPhaseIdx, nPhaseIdx, gPhaseIdx, ThreePLaw> type;
|
|
};
|
|
|
|
// Set the heat conduction law
|
|
SET_PROP(InfiltrationBaseProblem, HeatConductionLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::Somerton<FluidSystem, Scalar> type;
|
|
};
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(InfiltrationBaseProblem, EndTime, 6e3);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(InfiltrationBaseProblem, InitialTimeStepSize, 60);
|
|
|
|
// The default DGF file to load
|
|
SET_STRING_PROP(InfiltrationBaseProblem, GridFile,
|
|
"./grids/infiltration_50x3.dgf");
|
|
} // namespace Properties
|
|
} // namespace Opm
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup VcfvTestProblems
|
|
* \brief Isothermal NAPL infiltration problem where LNAPL
|
|
* contaminates the unsaturated and the saturated groundwater
|
|
* zone.
|
|
*
|
|
* The 2D domain of this test problem is 500 m long and 10 m deep,
|
|
* where the lower part represents a slightly inclined groundwater
|
|
* table, and the upper part is the vadose zone. A LNAPL (Non-Aqueous
|
|
* Phase Liquid which is lighter than water) infiltrates (modelled
|
|
* with a Neumann boundary condition) into the vadose zone. Upon
|
|
* reaching the water table, it spreads (since lighter than water) and
|
|
* migrates on top of the water table in the direction of the slope.
|
|
* On its way through the vadose zone, it leaves a trace of residually
|
|
* trapped immobile NAPL, which can in the following dissolve and
|
|
* evaporate slowly, and eventually be transported by advection and
|
|
* diffusion.
|
|
*
|
|
* Left and right boundaries are constant hydraulic head boundaries
|
|
* (Dirichlet), Top and bottom are Neumann boundaries, all no-flow
|
|
* except for the small infiltration zone in the upper left part.
|
|
*/
|
|
template <class TypeTag>
|
|
class InfiltrationProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag,
|
|
BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
// copy some indices for convenience
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
enum {
|
|
// equation indices
|
|
conti0EqIdx = Indices::conti0EqIdx,
|
|
|
|
// number of phases/components
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// component indices
|
|
NAPLIdx = FluidSystem::NAPLIdx,
|
|
H2OIdx = FluidSystem::H2OIdx,
|
|
airIdx = FluidSystem::airIdx,
|
|
|
|
// phase indices
|
|
wPhaseIdx = FluidSystem::wPhaseIdx,
|
|
gPhaseIdx = FluidSystem::gPhaseIdx,
|
|
nPhaseIdx = FluidSystem::nPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
InfiltrationProblem(TimeManager &timeManager)
|
|
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
|
|
: ParentType(timeManager,
|
|
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafGridView()),
|
|
#else
|
|
: ParentType(timeManager,
|
|
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView()),
|
|
#endif
|
|
eps_(1e-6)
|
|
{
|
|
temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius
|
|
FluidSystem::init(/*tempMin=*/temperature_ - 1,
|
|
/*tempMax=*/temperature_ + 1,
|
|
/*nTemp=*/3,
|
|
/*pressMin=*/0.8 * 1e5,
|
|
/*pressMax=*/3 * 1e5,
|
|
/*nPress=*/200);
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(1e-11);
|
|
coarseK_ = this->toDimMatrix_(1e-11);
|
|
|
|
// porosities
|
|
porosity_ = 0.40;
|
|
|
|
// residual saturations
|
|
materialParams_.setSwr(0.12);
|
|
materialParams_.setSwrx(0.12);
|
|
materialParams_.setSnr(0.07);
|
|
materialParams_.setSgr(0.03);
|
|
|
|
// parameters for the 3phase van Genuchten law
|
|
materialParams_.setVgAlpha(0.0005);
|
|
materialParams_.setVgN(4.);
|
|
materialParams_.setkrRegardsSnr(false);
|
|
|
|
// parameters for adsorption
|
|
materialParams_.setKdNAPL(0.);
|
|
materialParams_.setRhoBulk(1500.);
|
|
|
|
materialParams_.checkDefined();
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::shouldWriteRestartFile
|
|
*
|
|
* This problem writes a restart file after every time step.
|
|
*/
|
|
bool shouldWriteRestartFile() const
|
|
{ return true; }
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::name
|
|
*/
|
|
const std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "infiltration_" << this->model().name();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
{
|
|
// const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
// if (isFineMaterial_(pos))
|
|
// return finePorosity_;
|
|
// else
|
|
// return coarsePorosity_;
|
|
return porosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{ return materialParams_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
|
|
*
|
|
* In this case, we assume the rock-matrix to be quartz.
|
|
*/
|
|
template <class Context>
|
|
Scalar heatCapacitySolid(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
return 850. // specific heat capacity [J / (kg K)]
|
|
* 2650.; // density of sand [kg/m^3]
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const auto &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector molarRate(0.0);
|
|
molarRate[conti0EqIdx + NAPLIdx] = -0.001;
|
|
|
|
values.setMolarRate(molarRate);
|
|
Valgrind::CheckDefined(values);
|
|
}
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volume terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
|
|
Valgrind::CheckDefined(values);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] < eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition &pos) const
|
|
{ return onUpperBoundary_(pos) && 50 < pos[0] && pos[0] < 75; }
|
|
|
|
template <class FluidState, class Context>
|
|
void initialFluidState_(FluidState &fs, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition pos = context.pos(spaceIdx, timeIdx);
|
|
Scalar y = pos[1];
|
|
Scalar x = pos[0];
|
|
|
|
Scalar densityW = 1000.0;
|
|
Scalar pc = 9.81 * densityW * (y - (5 - 5e-4 * x));
|
|
if (pc < 0.0)
|
|
pc = 0.0;
|
|
|
|
// set pressures
|
|
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
Scalar Sw = invertPCGW_(pc, matParams);
|
|
Scalar Swr = matParams.satResidual(wPhaseIdx);
|
|
Scalar Sgr = matParams.satResidual(gPhaseIdx);
|
|
if (Sw < Swr)
|
|
Sw = Swr;
|
|
if (Sw > 1 - Sgr)
|
|
Sw = 1 - Sgr;
|
|
Scalar Sg = 1 - Sw;
|
|
|
|
Valgrind::CheckDefined(Sw);
|
|
Valgrind::CheckDefined(Sg);
|
|
|
|
fs.setSaturation(wPhaseIdx, Sw);
|
|
fs.setSaturation(gPhaseIdx, Sg);
|
|
fs.setSaturation(nPhaseIdx, 0);
|
|
|
|
// set temperature of all phases
|
|
fs.setTemperature(temperature_);
|
|
|
|
// compute pressures
|
|
Scalar pcAll[numPhases];
|
|
Scalar pg = 1e5;
|
|
if (onLeftBoundary_(pos))
|
|
pg += 10e3;
|
|
MaterialLaw::capillaryPressures(pcAll, matParams, fs);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fs.setPressure(phaseIdx, pg + (pcAll[phaseIdx] - pcAll[gPhaseIdx]));
|
|
|
|
// set composition of gas phase
|
|
fs.setMoleFraction(gPhaseIdx, H2OIdx, 1e-6);
|
|
fs.setMoleFraction(gPhaseIdx, airIdx,
|
|
1 - fs.moleFraction(gPhaseIdx, H2OIdx));
|
|
fs.setMoleFraction(gPhaseIdx, NAPLIdx, 0);
|
|
|
|
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
CFRP::solve(fs, paramCache, gPhaseIdx,
|
|
/*setViscosity=*/false,
|
|
/*setEnthalpy=*/false);
|
|
|
|
fs.setMoleFraction(wPhaseIdx, H2OIdx,
|
|
1 - fs.moleFraction(wPhaseIdx, H2OIdx));
|
|
}
|
|
|
|
static Scalar invertPCGW_(Scalar pcIn, const MaterialLawParams &pcParams)
|
|
{
|
|
Scalar lower, upper;
|
|
int k;
|
|
int maxIt = 50;
|
|
Scalar bisLimit = 1.;
|
|
Scalar Sw, pcGW;
|
|
lower = 0.0;
|
|
upper = 1.0;
|
|
for (k = 1; k <= 25; k++) {
|
|
Sw = 0.5 * (upper + lower);
|
|
pcGW = MaterialLaw::pCGW(pcParams, Sw);
|
|
Scalar delta = pcGW - pcIn;
|
|
if (delta < 0.)
|
|
delta *= -1.;
|
|
if (delta < bisLimit) {
|
|
return (Sw);
|
|
}
|
|
if (k == maxIt) {
|
|
return (Sw);
|
|
}
|
|
if (pcGW > pcIn)
|
|
lower = Sw;
|
|
else
|
|
upper = Sw;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool isFineMaterial_(const GlobalPosition &pos) const
|
|
{
|
|
return 70. <= pos[0] && pos[0] <= 85. && 7.0 <= pos[1] && pos[1] <= 7.50;
|
|
}
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
|
|
Scalar porosity_;
|
|
|
|
MaterialLawParams materialParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|