mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 18:12:59 -06:00
227 lines
9.0 KiB
C++
227 lines
9.0 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/core/flowdiagnostics/FlowDiagnostics.hpp>
|
|
#include <opm/core/wells.h>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
/// \brief Compute flow-capacity/storage-capacity based on time-of-flight.
|
|
///
|
|
/// The F-Phi curve is an analogue to the fractional flow curve in a 1D
|
|
/// displacement. It can be used to compute other interesting diagnostic
|
|
/// quantities such as the Lorenz coefficient. For a technical description
|
|
/// see Shavali et al. (SPE 146446), Shook and Mitchell (SPE 124625).
|
|
///
|
|
/// \param[in] pv pore volumes of each cell
|
|
/// \param[in] ftof forward (time from injector) time-of-flight values for each cell
|
|
/// \param[in] rtof reverse (time to producer) time-of-flight values for each cell
|
|
/// \return a pair of vectors, the first containing F (flow capacity) the second
|
|
/// containing Phi (storage capacity).
|
|
std::pair<std::vector<double>, std::vector<double>> computeFandPhi(const std::vector<double>& pv,
|
|
const std::vector<double>& ftof,
|
|
const std::vector<double>& rtof)
|
|
{
|
|
if (pv.size() != ftof.size() || pv.size() != rtof.size()) {
|
|
OPM_THROW(std::runtime_error, "computeFandPhi(): Input vectors must have same size.");
|
|
}
|
|
|
|
// Sort according to total travel time.
|
|
const int n = pv.size();
|
|
typedef std::pair<double, double> D2;
|
|
std::vector<D2> time_and_pv(n);
|
|
for (int ii = 0; ii < n; ++ii) {
|
|
time_and_pv[ii].first = ftof[ii] + rtof[ii]; // Total travel time.
|
|
time_and_pv[ii].second = pv[ii];
|
|
}
|
|
std::sort(time_and_pv.begin(), time_and_pv.end());
|
|
|
|
// Compute Phi.
|
|
std::vector<double> Phi(n + 1);
|
|
Phi[0] = 0.0;
|
|
for (int ii = 0; ii < n; ++ii) {
|
|
Phi[ii+1] = time_and_pv[ii].second;
|
|
}
|
|
std::partial_sum(Phi.begin(), Phi.end(), Phi.begin());
|
|
const double vt = Phi.back(); // Total pore volume.
|
|
for (int ii = 1; ii < n+1; ++ii) { // Note limits of loop.
|
|
Phi[ii] /= vt; // Normalize Phi.
|
|
}
|
|
|
|
// Compute F.
|
|
std::vector<double> F(n + 1);
|
|
F[0] = 0.0;
|
|
for (int ii = 0; ii < n; ++ii) {
|
|
F[ii+1] = time_and_pv[ii].second / time_and_pv[ii].first;
|
|
}
|
|
std::partial_sum(F.begin(), F.end(), F.begin());
|
|
const double ft = F.back(); // Total flux.
|
|
for (int ii = 1; ii < n+1; ++ii) { // Note limits of loop.
|
|
F[ii] /= ft; // Normalize Phi.
|
|
}
|
|
|
|
return std::make_pair(F, Phi);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Compute the Lorenz coefficient based on the F-Phi curve.
|
|
///
|
|
/// The Lorenz coefficient is a measure of heterogeneity. It is equal
|
|
/// to twice the area between the F-Phi curve and the F = Phi line.
|
|
/// The coefficient can vary from zero to one. If the coefficient is
|
|
/// zero (so the F-Phi curve is a straight line) we have perfect
|
|
/// piston-like displacement while a coefficient of one indicates
|
|
/// infinitely heterogenous displacement (essentially no sweep).
|
|
///
|
|
/// Note: The coefficient is analogous to the Gini coefficient of
|
|
/// economic theory, where the name Lorenz curve is applied to
|
|
/// what we call the F-Phi curve.
|
|
///
|
|
/// \param[in] flowcap flow capacity (F) as from computeFandPhi()
|
|
/// \param[in] storagecap storage capacity (Phi) as from computeFandPhi()
|
|
/// \return the Lorenz coefficient
|
|
double computeLorenz(const std::vector<double>& flowcap,
|
|
const std::vector<double>& storagecap)
|
|
{
|
|
if (flowcap.size() != storagecap.size()) {
|
|
OPM_THROW(std::runtime_error, "computeLorenz(): Input vectors must have same size.");
|
|
}
|
|
double integral = 0.0;
|
|
// Trapezoid quadrature of the curve F(Phi).
|
|
const int num_intervals = flowcap.size() - 1;
|
|
for (int ii = 0; ii < num_intervals; ++ii) {
|
|
const double len = storagecap[ii+1] - storagecap[ii];
|
|
integral += (flowcap[ii] + flowcap[ii+1]) * len / 2.0;
|
|
}
|
|
return 2.0 * (integral - 0.5);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Compute sweep efficiency versus dimensionless time (PVI).
|
|
///
|
|
/// The sweep efficiency is analogue to 1D displacement using the
|
|
/// F-Phi curve as flux function.
|
|
///
|
|
/// \param[in] flowcap flow capacity (F) as from computeFandPhi()
|
|
/// \param[in] storagecap storage capacity (Phi) as from computeFandPhi()
|
|
/// \return a pair of vectors, the first containing Ev (sweep efficiency)
|
|
/// the second containing tD (dimensionless time).
|
|
std::pair<std::vector<double>, std::vector<double>> computeSweep(const std::vector<double>& flowcap,
|
|
const std::vector<double>& storagecap)
|
|
{
|
|
if (flowcap.size() != storagecap.size()) {
|
|
OPM_THROW(std::runtime_error, "computeSweep(): Input vectors must have same size.");
|
|
}
|
|
|
|
// Compute tD and Ev simultaneously,
|
|
// skipping identical Phi data points.
|
|
const int n = flowcap.size();
|
|
std::vector<double> Ev;
|
|
std::vector<double> tD;
|
|
tD.reserve(n);
|
|
Ev.reserve(n);
|
|
tD.push_back(0.0);
|
|
Ev.push_back(0.0);
|
|
for (int ii = 1; ii < n; ++ii) { // Note loop limits.
|
|
const double fd = flowcap[ii] - flowcap[ii-1];
|
|
const double sd = storagecap[ii] - storagecap[ii-1];
|
|
if (fd != 0.0) {
|
|
tD.push_back(sd/fd);
|
|
Ev.push_back(storagecap[ii] + (1.0 - flowcap[ii]) * tD.back());
|
|
}
|
|
}
|
|
|
|
return std::make_pair(Ev, tD);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Compute volumes associated with injector-producer pairs.
|
|
///
|
|
/// \param[in] wells wells structure, containing NI injector wells and NP producer wells.
|
|
/// \param[in] porevol pore volume of each grid cell
|
|
/// \param[in] ftracer array of forward (injector) tracer values, NI per cell
|
|
/// \param[in] btracer array of backward (producer) tracer values, NP per cell
|
|
/// \return a vector of tuples, one tuple for each injector-producer pair,
|
|
/// where the first and second elements are well indices for the
|
|
/// injector and producer, and the third element is the pore volume
|
|
/// associated with that pair.
|
|
std::vector<std::tuple<int, int, double> >
|
|
computeWellPairs(const Wells& wells,
|
|
const std::vector<double>& porevol,
|
|
const std::vector<double>& ftracer,
|
|
const std::vector<double>& btracer)
|
|
{
|
|
// Identify injectors and producers.
|
|
std::vector<int> inj;
|
|
std::vector<int> prod;
|
|
const int nw = wells.number_of_wells;
|
|
for (int w = 0; w < nw; ++w) {
|
|
if (wells.type[w] == INJECTOR) {
|
|
inj.push_back(w);
|
|
} else {
|
|
prod.push_back(w);
|
|
}
|
|
}
|
|
|
|
// Check sizes of input arrays.
|
|
const int nc = porevol.size();
|
|
if (nc * inj.size() != ftracer.size()) {
|
|
OPM_THROW(std::runtime_error, "computeWellPairs(): wrong size of input array ftracer.");
|
|
}
|
|
if (nc * prod.size() != btracer.size()) {
|
|
OPM_THROW(std::runtime_error, "computeWellPairs(): wrong size of input array btracer.");
|
|
}
|
|
|
|
// Compute associated pore volumes.
|
|
std::vector<std::tuple<int, int, double> > result;
|
|
const int num_inj = inj.size();
|
|
const int num_prod = prod.size();
|
|
for (int inj_ix = 0; inj_ix < num_inj; ++inj_ix) {
|
|
for (int prod_ix = 0; prod_ix < num_prod; ++prod_ix) {
|
|
double assoc_porevol = 0.0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
assoc_porevol += porevol[c]
|
|
* ftracer[num_inj * c + inj_ix]
|
|
* btracer[num_prod * c + prod_ix];
|
|
}
|
|
result.push_back(std::make_tuple(inj[inj_ix], prod[prod_ix], assoc_porevol));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|