opm-simulators/opm/simulators/flow/Main.hpp
Bård Skaflestad bf0b7ed948
Merge pull request #4592 from totto82/fix_vapwat_gw
pick correct version of flow for gas-water-vapwat case
2023-05-03 11:14:22 +02:00

696 lines
24 KiB
C++

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MAIN_HEADER_INCLUDED
#define OPM_MAIN_HEADER_INCLUDED
#include <flow/flow_ebos_blackoil.hpp>
#include <flow/flow_ebos_blackoil_legacyassembly.hpp>
#include <flow/flow_ebos_gasoil.hpp>
#include <flow/flow_ebos_gasoildiffuse.hpp>
#include <flow/flow_ebos_gasoil_energy.hpp>
#include <flow/flow_ebos_oilwater.hpp>
#include <flow/flow_ebos_gaswater.hpp>
#include <flow/flow_ebos_solvent.hpp>
#include <flow/flow_ebos_polymer.hpp>
#include <flow/flow_ebos_extbo.hpp>
#include <flow/flow_ebos_foam.hpp>
#include <flow/flow_ebos_brine.hpp>
#include <flow/flow_ebos_brine_saltprecipitation.hpp>
#include <flow/flow_ebos_gaswater_saltprec_vapwat.hpp>
#include <flow/flow_ebos_brine_precsalt_vapwat.hpp>
#include <flow/flow_ebos_onephase.hpp>
#include <flow/flow_ebos_onephase_energy.hpp>
#include <flow/flow_ebos_oilwater_brine.hpp>
#include <flow/flow_ebos_gaswater_brine.hpp>
#include <flow/flow_ebos_gaswater_energy.hpp>
#include <flow/flow_ebos_gaswater_dissolution.hpp>
#include <flow/flow_ebos_gaswater_dissolution_diffuse.hpp>
#include <flow/flow_ebos_energy.hpp>
#include <flow/flow_ebos_oilwater_polymer.hpp>
#include <flow/flow_ebos_oilwater_polymer_injectivity.hpp>
#include <flow/flow_ebos_micp.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/simulators/flow/Banners.hpp>
#include <opm/simulators/flow/FlowMainEbos.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
#if HAVE_MPI
#include <opm/simulators/utils/ParallelEclipseState.hpp>
#endif
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
#include <string_view>
#include <type_traits>
#include <utility>
namespace Opm::Properties {
// this is a dummy type tag that is used to setup the parameters before the actual
// simulator.
namespace TTag {
struct FlowEarlyBird {
using InheritsFrom = std::tuple<EclFlowProblem>;
};
}
} // namespace Opm::Properties
namespace Opm {
namespace Action { class State; }
class UDQState;
class WellTestState;
// ----------------- Main program -----------------
template <class TypeTag>
int flowEbosMain(int argc, char** argv, bool outputCout, bool outputFiles)
{
// we always want to use the default locale, and thus spare us the trouble
// with incorrect locale settings.
resetLocale();
FlowMainEbos<TypeTag> mainfunc(argc, argv, outputCout, outputFiles);
return mainfunc.execute();
}
// ----------------- Main class -----------------
// For now, we will either be instantiated from main() in flow.cpp,
// or from a Python pybind11 module..
// NOTE (March 2020): When used from a pybind11 module, we do not neccessarily
// want to run the whole simulation by calling run(), it is also
// useful to just run one report step at a time. According to these different
// usage scenarios, we refactored the original run() in flow.cpp into this class.
class Main
{
public:
Main(int argc, char** argv);
// This constructor can be called from Python
Main(const std::string& filename);
// This constructor can be called from Python when Python has
// already parsed a deck
Main(const std::string& filename,
std::shared_ptr<EclipseState> eclipseState,
std::shared_ptr<Schedule> schedule,
std::shared_ptr<SummaryConfig> summaryConfig);
~Main();
void setArgvArgc_(const std::string& filename);
void initMPI();
int runDynamic()
{
int exitCode = EXIT_SUCCESS;
if (isSimulationRank_) {
if (initialize_<Properties::TTag::FlowEarlyBird>(exitCode)) {
return this->dispatchDynamic_();
}
}
return exitCode;
}
template <class TypeTag>
int runStatic()
{
int exitCode = EXIT_SUCCESS;
if (isSimulationRank_) {
if (initialize_<TypeTag>(exitCode)) {
return this->dispatchStatic_<TypeTag>();
}
}
return exitCode;
}
using FlowMainEbosType = FlowMainEbos<Properties::TTag::EclFlowProblemTPFA>;
// To be called from the Python interface code. Only do the
// initialization and then return a pointer to the FlowEbosMain
// object that can later be accessed directly from the Python interface
// to e.g. advance the simulator one report step
std::unique_ptr<FlowMainEbosType> initFlowEbosBlackoil(int& exitCode)
{
exitCode = EXIT_SUCCESS;
if (initialize_<Properties::TTag::FlowEarlyBird>(exitCode)) {
// TODO: check that this deck really represents a blackoil
// case. E.g. check that number of phases == 3
this->setupVanguard();
return flowEbosBlackoilTpfaMainInit(
argc_, argv_, outputCout_, outputFiles_);
} else {
//NOTE: exitCode was set by initialize_() above;
return std::unique_ptr<FlowMainEbosType>(); // nullptr
}
}
private:
int dispatchDynamic_()
{
const auto& rspec = this->eclipseState_->runspec();
const auto& phases = rspec.phases();
this->setupVanguard();
// run the actual simulator
//
// TODO: make sure that no illegal combinations like thermal and
// twophase are requested.
const bool thermal = eclipseState_->getSimulationConfig().isThermal();
// Single-phase case
if (rspec.micp()) {
return this->runMICP(phases);
}
// water-only case
else if (phases.size() == 1 && phases.active(Phase::WATER) && !thermal) {
return this->runWaterOnly(phases);
}
// water-only case with energy
else if (phases.size() == 2 && phases.active(Phase::WATER) && thermal) {
return this->runWaterOnlyEnergy(phases);
}
// Twophase cases
else if (phases.size() == 2 && !thermal) {
return this->runTwoPhase(phases);
}
// Polymer case
else if (phases.active(Phase::POLYMER)) {
return this->runPolymer(phases);
}
// Foam case
else if (phases.active(Phase::FOAM)) {
return this->runFoam();
}
// Brine case
else if (phases.active(Phase::BRINE)) {
return this->runBrine(phases);
}
// Solvent case
else if (phases.active(Phase::SOLVENT)) {
return this->runSolvent();
}
// Extended BO case
else if (phases.active(Phase::ZFRACTION)) {
return this->runExtendedBlackOil();
}
// Energy case
else if (thermal) {
return this->runThermal(phases);
}
// Blackoil case
else if (phases.size() == 3) {
return this->runBlackOil();
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid are "
<< "Twophase, polymer, foam, brine, solvent, "
<< "energy, and blackoil.\n";
}
return EXIT_FAILURE;
}
}
template <class TypeTag>
int dispatchStatic_()
{
this->setupVanguard();
return flowEbosMain<TypeTag>(argc_, argv_, outputCout_, outputFiles_);
}
/// \brief Initialize
/// \param exitCode The exitCode of the program.
///
/// \return Whether to actually run the simulator. I.e. true if
/// parsing of command line was successful and no --help,
/// --print-properties, or --print-parameters have been found.
template <class TypeTagEarlyBird>
bool initialize_(int& exitCode)
{
Dune::Timer externalSetupTimer;
externalSetupTimer.start();
handleVersionCmdLine_(argc_, argv_, Opm::moduleVersionName());
// we always want to use the default locale, and thus spare us the trouble
// with incorrect locale settings.
resetLocale();
// this is a work-around for a catch 22: we do not know what code path to use without
// parsing the deck, but we don't know the deck without having access to the
// parameters and this requires to know the type tag to be used. To solve this, we
// use a type tag just for parsing the parameters before we instantiate the actual
// simulator object. (Which parses the parameters again, but since this is done in an
// identical manner it does not matter.)
typedef TypeTagEarlyBird PreTypeTag;
using PreProblem = GetPropType<PreTypeTag, Properties::Problem>;
PreProblem::setBriefDescription("Flow, an advanced reservoir simulator for ECL-decks provided by the Open Porous Media project.");
int status = FlowMainEbos<PreTypeTag>::setupParameters_(argc_, argv_, EclGenericVanguard::comm());
if (status != 0) {
// if setupParameters_ returns a value smaller than 0, there was no error, but
// the program should abort. This is the case e.g. for the --help and the
// --print-properties parameters.
#if HAVE_MPI
if (status >= 0)
MPI_Abort(MPI_COMM_WORLD, status);
#endif
exitCode = (status > 0) ? status : EXIT_SUCCESS;
return false; // Whether to run the simulator
}
std::string deckFilename;
std::string outputDir;
if ( eclipseState_ ) {
deckFilename = eclipseState_->getIOConfig().fullBasePath();
outputDir = eclipseState_->getIOConfig().getOutputDir();
}
else {
deckFilename = EWOMS_GET_PARAM(PreTypeTag, std::string, EclDeckFileName);
outputDir = EWOMS_GET_PARAM(PreTypeTag, std::string, OutputDir);
}
#if HAVE_DAMARIS
enableDamarisOutput_ = EWOMS_GET_PARAM(PreTypeTag, bool, EnableDamarisOutput);
if (enableDamarisOutput_) {
this->setupDamaris(outputDir,
EWOMS_GET_PARAM(PreTypeTag, bool, EnableDamarisOutputCollective));
}
#endif // HAVE_DAMARIS
int mpiRank = EclGenericVanguard::comm().rank();
outputCout_ = false;
if (mpiRank == 0)
outputCout_ = EWOMS_GET_PARAM(PreTypeTag, bool, EnableTerminalOutput);
if (deckFilename.empty()) {
if (mpiRank == 0) {
std::cerr << "No input case given. Try '--help' for a usage description.\n";
}
exitCode = EXIT_FAILURE;
return false;
}
using PreVanguard = GetPropType<PreTypeTag, Properties::Vanguard>;
try {
deckFilename = PreVanguard::canonicalDeckPath(deckFilename);
}
catch (const std::exception& e) {
if ( mpiRank == 0 ) {
std::cerr << "Exception received: " << e.what() << ". Try '--help' for a usage description.\n";
}
#if HAVE_MPI
MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
#endif
exitCode = EXIT_FAILURE;
return false;
}
std::string cmdline_params;
if (outputCout_) {
printFlowBanner(EclGenericVanguard::comm().size(),
getNumThreads<PreTypeTag>(),
Opm::moduleVersionName());
std::ostringstream str;
Parameters::printValues<PreTypeTag>(str);
cmdline_params = str.str();
}
// Create Deck and EclipseState.
try {
this->readDeck(deckFilename,
outputDir,
EWOMS_GET_PARAM(PreTypeTag, std::string, OutputMode),
!EWOMS_GET_PARAM(PreTypeTag, bool, SchedRestart),
EWOMS_GET_PARAM(PreTypeTag, bool, EnableLoggingFalloutWarning),
EWOMS_GET_PARAM(PreTypeTag, std::string, ParsingStrictness),
mpiRank,
EWOMS_GET_PARAM(PreTypeTag, int, EclOutputInterval),
cmdline_params,
Opm::moduleVersion(),
Opm::compileTimestamp());
setupTime_ = externalSetupTimer.elapsed();
}
catch (const std::invalid_argument& e)
{
if (outputCout_) {
std::cerr << "Failed to create valid EclipseState object." << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
}
#if HAVE_MPI
MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
#endif
exitCode = EXIT_FAILURE;
return false;
}
exitCode = EXIT_SUCCESS;
return true;
}
// This function is an extreme special case, if the program has been invoked
// *exactly* as:
//
// flow --version
//
// the call is intercepted by this function which will print "flow $version"
// on stdout and exit(0).
void handleVersionCmdLine_(int argc, char** argv,
std::string_view moduleVersionName);
// This function is a special case, if the program has been invoked
// with the argument "--test-split-communicator=true" as the FIRST
// argument, it will be removed from the argument list and we set the
// test_split_comm_ flag to true.
// Note: initializing the parameter system before MPI could make this
// use the parameter system instead.
void handleTestSplitCommunicatorCmdLine_();
int runMICP(const Phases& phases)
{
if (!phases.active(Phase::WATER) || (phases.size() > 2)) {
if (outputCout_) {
std::cerr << "No valid configuration is found for MICP simulation, "
<< "the only valid option is water + MICP\n";
}
return EXIT_FAILURE;
}
return flowEbosMICPMain(this->argc_,
this->argv_,
this->outputCout_,
this->outputFiles_);
}
int runTwoPhase(const Phases& phases)
{
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive();
const bool disgasw = eclipseState_->getSimulationConfig().hasDISGASW();
const bool vapwat = eclipseState_->getSimulationConfig().hasVAPWAT();
// oil-gas
if (phases.active( Phase::OIL ) && phases.active( Phase::GAS )) {
if (diffusive) {
return flowEbosGasOilDiffuseMain(argc_, argv_, outputCout_, outputFiles_);
} else {
return flowEbosGasOilMain(argc_, argv_, outputCout_, outputFiles_);
}
}
// oil-water
else if ( phases.active( Phase::OIL ) && phases.active( Phase::WATER ) ) {
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for the two-phase water/oil model." << std::endl;
}
return EXIT_FAILURE;
}
return flowEbosOilWaterMain(argc_, argv_, outputCout_, outputFiles_);
}
// gas-water
else if ( phases.active( Phase::GAS ) && phases.active( Phase::WATER ) ) {
if (disgasw || vapwat) {
if (diffusive) {
return flowEbosGasWaterDissolutionDiffuseMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowEbosGasWaterDissolutionMain(argc_, argv_, outputCout_, outputFiles_);
}
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for the two-phase gas/water model without disgasw or vapwat." << std::endl;
}
return EXIT_FAILURE;
}
return flowEbosGasWaterMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid are Twophase (oilwater, oilgas and gaswater), polymer, solvent, or blackoil" << std::endl;
}
return EXIT_FAILURE;
}
}
int runPolymer(const Phases& phases)
{
if (! phases.active(Phase::WATER)) {
if (outputCout_)
std::cerr << "No valid configuration is found for polymer simulation, valid options include "
<< "oilwater + polymer and blackoil + polymer" << std::endl;
return EXIT_FAILURE;
}
// Need to track the polymer molecular weight
// for the injectivity study
if (phases.active(Phase::POLYMW)) {
// only oil water two phase for now
assert (phases.size() == 4);
return flowEbosOilWaterPolymerInjectivityMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.size() == 3) { // oil water polymer case
return flowEbosOilWaterPolymerMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowEbosPolymerMain(argc_, argv_, outputCout_, outputFiles_);
}
}
int runFoam()
{
return flowEbosFoamMain(argc_, argv_, outputCout_, outputFiles_);
}
int runWaterOnly(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 1) {
if (outputCout_)
std::cerr << "No valid configuration is found for water-only simulation, valid options include "
<< "water, water + thermal" << std::endl;
return EXIT_FAILURE;
}
return flowEbosWaterOnlyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runWaterOnlyEnergy(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 2) {
if (outputCout_)
std::cerr << "No valid configuration is found for water-only simulation, valid options include "
<< "water, water + thermal" << std::endl;
return EXIT_FAILURE;
}
return flowEbosWaterOnlyEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runBrine(const Phases& phases)
{
if (! phases.active(Phase::WATER) || phases.size() == 2) {
if (outputCout_)
std::cerr << "No valid configuration is found for brine simulation, valid options include "
<< "oilwater + brine, gaswater + brine and blackoil + brine" << std::endl;
return EXIT_FAILURE;
}
if (phases.size() == 3) {
if (phases.active(Phase::OIL)){ // oil water brine case
return flowEbosOilWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.active(Phase::GAS)){ // gas water brine case
if (eclipseState_->getSimulationConfig().hasPRECSALT() &&
eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowEbosGasWaterSaltprecVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowEbosGasWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
}
}
else if (eclipseState_->getSimulationConfig().hasPRECSALT()) {
if (eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowEbosBrinePrecsaltVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowEbosBrineSaltPrecipitationMain(argc_, argv_, outputCout_, outputFiles_);
}
}
else {
return flowEbosBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
return EXIT_FAILURE;
}
int runSolvent()
{
return flowEbosSolventMain(argc_, argv_, outputCout_, outputFiles_);
}
int runExtendedBlackOil()
{
return flowEbosExtboMain(argc_, argv_, outputCout_, outputFiles_);
}
int runThermal(const Phases& phases)
{
// oil-gas-thermal
if (!phases.active( Phase::WATER ) && phases.active( Phase::OIL ) && phases.active( Phase::GAS )) {
return flowEbosGasOilEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
// water-gas-thermal
if (!phases.active( Phase::OIL ) && phases.active( Phase::WATER ) && phases.active( Phase::GAS )) {
return flowEbosGasWaterEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowEbosEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runBlackOil()
{
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive();
if (diffusive) {
// Use the traditional linearizer, as the TpfaLinearizer does not
// support the diffusion module yet.
return flowEbosBlackoilMain(argc_, argv_, outputCout_, outputFiles_);
} else {
return flowEbosBlackoilTpfaMain(argc_, argv_, outputCout_, outputFiles_);
}
}
void readDeck(const std::string& deckFilename,
const std::string& outputDir,
const std::string& outputMode,
const bool init_from_restart_file,
const bool allRanksDbgPrtLog,
const std::string& parsingStrictness,
const int mpiRank,
const int output_param,
const std::string& parameters,
std::string_view moduleVersion,
std::string_view compileTimestamp);
void setupVanguard();
template<class TypeTag>
static int getNumThreads()
{
int threads = 1;
#ifdef _OPENMP
// This function is called before the parallel OpenMP stuff gets initialized.
// That initialization happends after the deck is read and we want this message.
// Hence we duplicate the code of setupParallelism to get the number of threads.
if (std::getenv("OMP_NUM_THREADS"))
threads = omp_get_max_threads();
else
threads = std::min(2, omp_get_max_threads());
const int input_threads = EWOMS_GET_PARAM(TypeTag, int, ThreadsPerProcess);
if (input_threads > 0)
threads = std::min(input_threads, omp_get_max_threads());
#endif
return threads;
}
#if HAVE_DAMARIS
void setupDamaris(const std::string& outputDir,
const bool enableDamarisOutputCollective);
#endif
int argc_{0};
char** argv_{nullptr};
bool outputCout_{false};
bool outputFiles_{false};
double setupTime_{0.0};
std::string deckFilename_{};
std::string flowProgName_{};
char *saveArgs_[3]{nullptr};
std::unique_ptr<UDQState> udqState_{};
std::unique_ptr<Action::State> actionState_{};
std::unique_ptr<WellTestState> wtestState_{};
// These variables may be owned by both Python and the simulator
std::shared_ptr<EclipseState> eclipseState_{};
std::shared_ptr<Schedule> schedule_{};
std::shared_ptr<SummaryConfig> summaryConfig_{};
// To demonstrate run with non_world_comm
bool test_split_comm_ = false;
bool isSimulationRank_ = true;
#if HAVE_DAMARIS
bool enableDamarisOutput_ = false;
#endif
};
} // namespace Opm
#endif // OPM_MAIN_HEADER_INCLUDED