opm-simulators/examples/sim_poly2p_incomp_reorder.cpp
2017-04-28 15:36:25 +02:00

369 lines
16 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/core/props/IncompPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/polymer/PolymerState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/SimulatorPolymer.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/simulators/ensureDirectoryExists.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow with polymer ===============\n\n";
ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
Deck deck;
boost::scoped_ptr<GridManager> grid;
boost::scoped_ptr<IncompPropertiesInterface> props;
boost::scoped_ptr<RockCompressibility> rock_comp;
std::shared_ptr< EclipseState > eclipseState;
std::unique_ptr<PolymerState> state;
Opm::PolymerProperties poly_props;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::ParseContext parseContext({{ ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }});
Parser parser;
deck = parser.parseFile(deck_filename , parseContext);
eclipseState.reset(new Opm::EclipseState(deck , parseContext));
// Grid init
grid.reset(new GridManager(eclipseState->getInputGrid()));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init
props.reset(new IncompPropertiesFromDeck(deck, *eclipseState, ug_grid ));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
state.reset( new PolymerState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ), 2));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(*eclipseState));
// Gravity.
gravity[2] = deck.hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(ug_grid, *props, param, gravity[2], *state);
} else {
initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
}
// Init polymer properties.
poly_props.readFromDeck(deck, *eclipseState);
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init.
props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));;
state.reset( new PolymerState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ) , 2));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(ug_grid, *props, param, gravity[2], *state);
// Init Polymer state
if (param.has("poly_init")) {
double poly_init = param.getDefault("poly_init", 0.0);
for (int cell = 0; cell < UgGridHelpers::numCells( ug_grid ); ++cell) {
double smin[2], smax[2];
auto& saturation = state->saturation();
auto& concentration = state->getCellData( state->CONCENTRATION );
auto& max_concentration = state->getCellData( state->CMAX );
props->satRange(1, &cell, smin, smax);
if (saturation[2*cell] > 0.5*(smin[0] + smax[0])) {
concentration[cell] = poly_init;
max_concentration[cell] = poly_init;
} else {
saturation[2*cell + 0] = 0.;
saturation[2*cell + 1] = 1.;
concentration[cell] = 0.;
max_concentration[cell] = 0.;
}
}
}
}
// Init polymer properties.
// Setting defaults to provide a simple example case.
double c_max = param.getDefault("c_max_limit", 5.0);
double mix_param = param.getDefault("mix_param", 1.0);
double rock_density = param.getDefault("rock_density", 1000.0);
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
double c_max_ads = param.getDefault("c_max_ads", 1.);
int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
std::vector<double> c_vals_visc(2, -1e100);
c_vals_visc[0] = 0.0;
c_vals_visc[1] = 7.0;
std::vector<double> visc_mult_vals(2, -1e100);
visc_mult_vals[0] = 1.0;
// poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
visc_mult_vals[1] = 20.0;
std::vector<double> c_vals_ads(3, -1e100);
c_vals_ads[0] = 0.0;
c_vals_ads[1] = 2.0;
c_vals_ads[2] = 8.0;
std::vector<double> ads_vals(3, -1e100);
ads_vals[0] = 0.0;
ads_vals[1] = 0.0015;
ads_vals[2] = 0.0025;
// ads_vals[1] = 0.0;
// ads_vals[2] = 0.0;
std::vector<double> water_vel_vals(2, -1e100);
water_vel_vals[0] = 0.0;
water_vel_vals[1] = 10.0;
std::vector<double> shear_vrf_vals(2, -1e100);
shear_vrf_vals[0] = 1.0;
shear_vrf_vals[1] = 1.0;
poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals, water_vel_vals, shear_vrf_vals);
}
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
if (output) {
std::string output_dir =
param.getDefault("output_dir", std::string("output"));
ensureDirectoryExists(output_dir);
param.writeParam(output_dir + "/simulation.param");
}
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< std::flush;
SimulatorReport rep;
if (!use_deck) {
// Simple simulation without a deck.
PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax()));
WellsManager wells;
SimulatorPolymer simulator(param,
*grid->c_grid(),
*props,
poly_props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
polymer_inflow,
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTimer simtimer;
simtimer.init(param);
warnIfUnusedParams(param);
WellState well_state;
well_state.init(0, *state);
rep = simulator.run(simtimer, *state, well_state);
} else {
// With a deck, we may have more epochs etc.
WellState well_state;
int step = 0;
const auto& timeMap = eclipseState->getSchedule().getTimeMap();
SimulatorTimer simtimer;
simtimer.init(timeMap);
// Check for WPOLYMER presence in last epoch to decide
// polymer injection control type.
const bool use_wpolymer = deck.hasKeyword("WPOLYMER");
if (use_wpolymer) {
if (param.has("poly_start_days")) {
OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
"You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
}
}
for (size_t reportStepIdx = 0; reportStepIdx < timeMap.numTimesteps(); ++reportStepIdx) {
simtimer.setCurrentStepNum(reportStepIdx);
// Report on start of report step.
std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------"
<< "\n (number of remaining steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, polymer inflow controls.
WellsManager wells(*eclipseState , reportStepIdx , *grid->c_grid());
boost::scoped_ptr<PolymerInflowInterface> polymer_inflow;
if (use_wpolymer) {
if (wells.c_wells() == 0) {
OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
}
polymer_inflow.reset(new PolymerInflowFromDeck(*eclipseState, *wells.c_wells(), props->numCells(), simtimer.currentStepNum()));
} else {
polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax())));
}
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every report step,
// since number of wells may change etc.
if (reportStepIdx == 0) {
well_state.init(wells.c_wells(), *state);
}
// Create and run simulator.
SimulatorPolymer simulator(param,
*grid->c_grid(),
*props,
poly_props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
*polymer_inflow,
src,
bcs.c_bcs(),
linsolver,
grav);
if (reportStepIdx == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}