opm-simulators/opm/models/blackoil/blackoilprimaryvariables.hh
2022-08-23 14:24:47 +02:00

1091 lines
49 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilPrimaryVariables
*/
#ifndef EWOMS_BLACK_OIL_PRIMARY_VARIABLES_HH
#define EWOMS_BLACK_OIL_PRIMARY_VARIABLES_HH
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilextbomodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilenergymodules.hh"
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoilmicpmodules.hh"
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
#include <dune/common/fvector.hh>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/common/Valgrind.hpp>
namespace Opm {
template <class TypeTag, bool enableSolvent>
class BlackOilSolventModule;
template <class TypeTag, bool enableExtbo>
class BlackOilExtboModule;
template <class TypeTag, bool enablePolymer>
class BlackOilPolymerModule;
template <class TypeTag, bool enableBrine>
class BlackOilBrineModule;
/*!
* \ingroup BlackOilModel
*
* \brief Represents the primary variables used by the black-oil model.
*/
template <class TypeTag>
class BlackOilPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
{
using ParentType = FvBasePrimaryVariables<TypeTag>;
using Implementation = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
// number of equations
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
// primary variable indices
enum { waterSaturationIdx = Indices::waterSaturationIdx };
enum { pressureSwitchIdx = Indices::pressureSwitchIdx };
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
enum { saltConcentrationIdx = Indices::saltConcentrationIdx };
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
static constexpr bool waterEnabled = Indices::waterEnabled;
static constexpr bool gasEnabled = Indices::gasEnabled;
static constexpr bool oilEnabled = Indices::oilEnabled;
// phase indices from the fluid system
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
// component indices from the fluid system
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
enum { enableEvaporation = getPropValue<TypeTag, Properties::EnableEvaporation>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
using Toolbox = MathToolbox<Evaluation>;
using ComponentVector = Dune::FieldVector<Scalar, numComponents>;
using SolventModule = BlackOilSolventModule<TypeTag, enableSolvent>;
using ExtboModule = BlackOilExtboModule<TypeTag, enableExtbo>;
using PolymerModule = BlackOilPolymerModule<TypeTag, enablePolymer>;
using EnergyModule = BlackOilEnergyModule<TypeTag, enableEnergy>;
using FoamModule = BlackOilFoamModule<TypeTag, enableFoam>;
using BrineModule = BlackOilBrineModule<TypeTag, enableBrine>;
using MICPModule = BlackOilMICPModule<TypeTag, enableMICP>;
static_assert(numPhases == 3, "The black-oil model assumes three phases!");
static_assert(numComponents == 3, "The black-oil model assumes three components!");
public:
enum PrimaryVarsMeaning {
Sw_po_Sg, // threephase case
Sw_po_Rs, // water + oil case
Sw_pg_Rv, // water + gas case
Rvw_po_Sg, // gas + oil case
Rvw_pg_Rv, //gas only
OnePhase_p, // onephase case
};
enum PrimaryVarsMeaningBrine {
Cs, // salt concentration
Sp, // (precipitated) salt saturation
};
BlackOilPrimaryVariables()
: ParentType()
{
Valgrind::SetUndefined(*this);
pvtRegionIdx_ = 0;
}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
*/
BlackOilPrimaryVariables(Scalar value)
: ParentType(value)
{
Valgrind::SetUndefined(primaryVarsMeaning_);
pvtRegionIdx_ = 0;
}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const ImmisciblePrimaryVariables& )
*/
BlackOilPrimaryVariables(const BlackOilPrimaryVariables& value) = default;
/*!
* \brief Set the index of the region which should be used for PVT properties.
*
* The concept of PVT regions is a hack to work around the fact that the
* pseudo-components used by the black oil model (i.e., oil, gas and water) change
* their composition within the spatial domain. We implement them because, the ECL
* file format mandates them.
*/
void setPvtRegionIndex(unsigned value)
{ pvtRegionIdx_ = static_cast<unsigned short>(value); }
/*!
* \brief Return the index of the region which should be used for PVT properties.
*/
unsigned pvtRegionIndex() const
{ return pvtRegionIdx_; }
/*!
* \brief Return the interpretation which should be applied to the switching primary
* variables.
*/
PrimaryVarsMeaning primaryVarsMeaning() const
{ return primaryVarsMeaning_; }
/*!
* \brief Set the interpretation which should be applied to the switching primary
* variables.
*/
void setPrimaryVarsMeaning(PrimaryVarsMeaning newMeaning)
{ primaryVarsMeaning_ = newMeaning; }
PrimaryVarsMeaningBrine primaryVarsMeaningBrine() const
{ return primaryVarsMeaningBrine_; }
/*!
* \brief Set the interpretation which should be applied to the switching primary
* variables.
*/
void setPrimaryVarsMeaningBrine(PrimaryVarsMeaningBrine newMeaning)
{ primaryVarsMeaningBrine_ = newMeaning; }
/*!
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
*/
template <class FluidState>
void assignMassConservative(const FluidState& fluidState,
const MaterialLawParams& matParams,
bool isInEquilibrium = false)
{
using ConstEvaluation = typename std::remove_reference<typename FluidState::Scalar>::type;
using FsEvaluation = typename std::remove_const<ConstEvaluation>::type;
using FsToolbox = MathToolbox<FsEvaluation>;
#ifndef NDEBUG
// make sure the temperature is the same in all fluid phases
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
Valgrind::CheckDefined(fluidState.temperature(0));
Valgrind::CheckDefined(fluidState.temperature(phaseIdx));
assert(fluidState.temperature(0) == fluidState.temperature(phaseIdx));
}
#endif // NDEBUG
// for the equilibrium case, we don't need complicated
// computations.
if (isInEquilibrium) {
assignNaive(fluidState);
return;
}
// If your compiler bails out here, you're probably not using a suitable black
// oil fluid system.
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.setRegionIndex(pvtRegionIdx_);
paramCache.setMaxOilSat(FsToolbox::value(fluidState.saturation(oilPhaseIdx)));
// create a mutable fluid state with well defined densities based on the input
using NcpFlash = NcpFlash<Scalar, FluidSystem>;
using FlashFluidState = CompositionalFluidState<Scalar, FluidSystem>;
FlashFluidState fsFlash;
fsFlash.setTemperature(FsToolbox::value(fluidState.temperature(/*phaseIdx=*/0)));
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fsFlash.setPressure(phaseIdx, FsToolbox::value(fluidState.pressure(phaseIdx)));
fsFlash.setSaturation(phaseIdx, FsToolbox::value(fluidState.saturation(phaseIdx)));
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fsFlash.setMoleFraction(phaseIdx, compIdx, FsToolbox::value(fluidState.moleFraction(phaseIdx, compIdx)));
}
paramCache.updateAll(fsFlash);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar rho = FluidSystem::template density<FlashFluidState, Scalar>(fsFlash, paramCache, phaseIdx);
fsFlash.setDensity(phaseIdx, rho);
}
// calculate the "global molarities"
ComponentVector globalMolarities(0.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
globalMolarities[compIdx] +=
fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
}
}
// use a flash calculation to calculate a fluid state in
// thermodynamic equilibrium
// run the flash calculation
NcpFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
// use the result to assign the primary variables
assignNaive(fsFlash);
}
/*!
* \copydoc ImmisciblePrimaryVariables::assignNaive
*/
template <class FluidState>
void assignNaive(const FluidState& fluidState)
{
using ConstEvaluation = typename std::remove_reference<typename FluidState::Scalar>::type;
using FsEvaluation = typename std::remove_const<ConstEvaluation>::type;
using FsToolbox = MathToolbox<FsEvaluation>;
bool gasPresent = FluidSystem::phaseIsActive(gasPhaseIdx)?(fluidState.saturation(gasPhaseIdx) > 0.0):false;
bool oilPresent = FluidSystem::phaseIsActive(oilPhaseIdx)?(fluidState.saturation(oilPhaseIdx) > 0.0):false;
bool waterPresent = FluidSystem::phaseIsActive(waterPhaseIdx)?(fluidState.saturation(waterPhaseIdx) > 0.0):false;
constexpr const Scalar thresholdWaterFilledCell = 1.0 - 1e-6;
bool onlyWater = FluidSystem::phaseIsActive(waterPhaseIdx)?(fluidState.saturation(waterPhaseIdx) > thresholdWaterFilledCell):false;
const auto& saltSaturation = BlackOil::getSaltSaturation_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
bool precipitatedSaltPresent = enableSaltPrecipitation?(saltSaturation > 0.0):false;
// deal with the primary variables for the energy extension
EnergyModule::assignPrimaryVars(*this, fluidState);
// determine the meaning of the primary variables
if (FluidSystem::numActivePhases() == 1) {
primaryVarsMeaning_ = OnePhase_p;
}
else if ((gasPresent && oilPresent) || (onlyWater && FluidSystem::phaseIsActive(oilPhaseIdx))) {
// gas and oil: both hydrocarbon phases are in equilibrium (i.e., saturated
// with the "protagonist" component of the other phase.)
if (FluidSystem::enableVaporizedWater() && !waterPresent)
primaryVarsMeaning_ = Rvw_po_Sg;
else
primaryVarsMeaning_ = Sw_po_Sg;
}
else if (oilPresent) {
// only oil: if dissolved gas is enabled, we need to consider the oil phase
// composition, if it is disabled, the gas component must stick to its phase
if (FluidSystem::enableDissolvedGas())
primaryVarsMeaning_ = Sw_po_Rs;
else
primaryVarsMeaning_ = Sw_po_Sg;
}
else {
assert(gasPresent);
// only gas: if vaporized oil is enabled, we need to consider the gas phase
// composition, if it is disabled, the oil component must stick to its phase
if (FluidSystem::enableVaporizedOil())
primaryVarsMeaning_ = Sw_pg_Rv;
else if (FluidSystem::enableVaporizedWater() && !waterPresent)
primaryVarsMeaning_ = Rvw_po_Sg;
else
primaryVarsMeaning_ = Sw_po_Sg;
}
if constexpr (enableSaltPrecipitation){
if (precipitatedSaltPresent)
primaryVarsMeaningBrine_ = Sp;
else
primaryVarsMeaningBrine_ = Cs;
}
// assign the actual primary variables
if (primaryVarsMeaning() == OnePhase_p) {
if constexpr (waterEnabled) {
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(waterPhaseIdx));
} else {
throw std::logic_error("For single-phase runs, only pure water is presently allowed.");
}
}
else if (primaryVarsMeaning() == Sw_po_Sg) {
if constexpr (waterEnabled)
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
if constexpr (gasEnabled && waterEnabled && !oilEnabled) {
//-> water-gas system
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(gasPhaseIdx));
}
else if constexpr (oilEnabled) {
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
}
if constexpr (compositionSwitchEnabled)
(*this)[compositionSwitchIdx] = FsToolbox::value(fluidState.saturation(gasPhaseIdx));
}
else if (primaryVarsMeaning() == Sw_po_Rs) {
const auto& Rs = BlackOil::getRs_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
if constexpr (waterEnabled)
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
if constexpr (compositionSwitchEnabled)
(*this)[compositionSwitchIdx] = Rs;
}
else if (primaryVarsMeaning() == Rvw_po_Sg && FluidSystem::enableVaporizedWater()) {
const auto& Rvw = BlackOil::getRvw_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
if constexpr (waterEnabled)
(*this)[waterSaturationIdx] = Rvw; //waterSaturationIdx becomes a switching idx
if constexpr (gasEnabled && waterEnabled && !oilEnabled) {
//-> water-gas system
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(gasPhaseIdx));
}
else if constexpr (oilEnabled) {
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
}
if constexpr (compositionSwitchEnabled)
(*this)[compositionSwitchIdx] = FsToolbox::value(fluidState.saturation(gasPhaseIdx));
}
else if (primaryVarsMeaning() == Rvw_pg_Rv && FluidSystem::enableVaporizedWater()) {
const auto& Rvw = BlackOil::getRvw_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
const auto& Rv = BlackOil::getRv_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
if constexpr (waterEnabled)
(*this)[waterSaturationIdx] = Rvw; //waterSaturationIdx becomes a switching idx
if constexpr (gasEnabled && waterEnabled && !oilEnabled) {
//-> water-gas system
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(gasPhaseIdx));
}
else if constexpr (oilEnabled) {
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
}
if constexpr (compositionSwitchEnabled)
(*this)[compositionSwitchIdx] = Rv;
}
else {
assert(primaryVarsMeaning() == Sw_pg_Rv);
const auto& Rv = BlackOil::getRv_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
if constexpr (waterEnabled)
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(gasPhaseIdx));
if constexpr (compositionSwitchEnabled)
(*this)[compositionSwitchIdx] = Rv;
}
if constexpr (enableSaltPrecipitation) {
if (primaryVarsMeaningBrine() == Sp) {
(*this)[saltConcentrationIdx] = FsToolbox::value(saltSaturation);
}
else {
const auto& saltConcentration = BlackOil::getSaltConcentration_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
(*this)[saltConcentrationIdx] = FsToolbox::value(saltConcentration);
}
}
checkDefined();
}
/*!
* \brief Adapt the interpretation of the switching variables to be physically
* meaningful.
*
* If the meaning of the primary variables changes, their values are also adapted in a
* meaningful manner. (e.g. if the gas phase appears and the composition switching
* variable changes its meaning from the gas dissolution factor Rs to the gas
* saturation Sg, the value for this variable is set to zero.)
* A Scalar eps can be passed to make the switching condition more strict.
* Useful for avoiding ocsilation in the primaryVarsMeaning.
*
* \return true Iff the interpretation of one of the switching variables was changed
*/
bool adaptPrimaryVariables(const Problem& problem, unsigned globalDofIdx, Scalar eps = 0.0)
{
static const Scalar thresholdWaterFilledCell = 1.0 - eps;
// this function accesses quite a few black-oil specific low-level functions
// directly for better performance (instead of going the canonical way through
// the IntensiveQuantities). The reason is that most intensive quantities are not
// required to be able to decide if the primary variables needs to be switched or
// not, so it would be a waste to compute them.
if (primaryVarsMeaning() == OnePhase_p){
return false;
}
Scalar Sw = 0.0;
if (waterEnabled && primaryVarsMeaning() != Rvw_po_Sg && primaryVarsMeaning() != Rvw_pg_Rv )
Sw = (*this)[Indices::waterSaturationIdx];
if constexpr (enableSaltPrecipitation) {
Scalar saltSolubility = BrineModule::saltSol(pvtRegionIndex());
if (primaryVarsMeaningBrine() == Sp) {
Scalar saltSat = (*this)[saltConcentrationIdx];
if (saltSat < -eps){ //precipitated salt dissappears
setPrimaryVarsMeaningBrine(Cs);
(*this)[saltConcentrationIdx] = saltSolubility; //set salt concentration to solubility limit
}
}
else if (primaryVarsMeaningBrine() == Cs) {
Scalar saltConc = (*this)[saltConcentrationIdx];
if (saltConc > saltSolubility + eps){ //salt concentration exceeds solubility limit
setPrimaryVarsMeaningBrine(Sp);
(*this)[saltConcentrationIdx] = 0.0;
}
}
}
// Primary variable switches possibilities for black-oil (from -> to)
// Sw_po_Sg (3-phase) -> Rvw_po_Sg, Sw_pg_Rv, Rvw_pg_Rv, Sw_po_Rs
// Sw_pg_Rv (water-gas) -> Rvw_pg_Rv, Sw_po_Sg, Rvw_po_Sg
// Rvw_po_Sg (gas-oil) -> Sw_po_Sg, Rvw_pg_Rv
// Rvw_pg_Rv (gas) -> Sw_pg_Rv, Rvw_po_Sg
// Sw_po_Rs (water-oil) -> Sw_po_Sg
if (primaryVarsMeaning() == Sw_po_Sg) {
// special case for cells with almost only water
if (Sw >= thresholdWaterFilledCell) {
// make sure water saturations does not exceed 1.0
if constexpr (waterEnabled)
(*this)[Indices::waterSaturationIdx] = 1.0;
// the hydrocarbon gas saturation is set to 0.0
if constexpr (compositionSwitchEnabled)
(*this)[Indices::compositionSwitchIdx] = 0.0;
return false;
}
// phase equilibrium, i.e., both hydrocarbon phases are present.
Scalar Sg = 0.0;
if constexpr (compositionSwitchEnabled)
Sg = (*this)[Indices::compositionSwitchIdx];
Scalar So = 1.0 - Sw - Sg - solventSaturation_();
Scalar So3 = 1.0 - Sg - solventSaturation_();
//water disappears
if(Sw < -eps && FluidSystem::enableVaporizedWater()) {
Scalar pg = 0.0;
Scalar T = asImp_().temperature_();
if constexpr (waterEnabled && gasEnabled && !oilEnabled) {
// twophase water-gas system
pg = (*this)[Indices::pressureSwitchIdx];
}
else {
if (So3 > 0.0 && Sg > 0.0) {
// threephase case
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC, So3, Sg + solventSaturation_(), /*Sw=*/ 0.0, matParams);
Scalar po = (*this)[Indices::pressureSwitchIdx];
pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
}
}
Scalar RvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
T,
pg);
setPrimaryVarsMeaning(Rvw_po_Sg);
(*this)[Indices::waterSaturationIdx] = RvwSat; //primary variable becomes Rvw
return true;
}
//water and oil disappears
if(Sw < -eps && So3 <-eps && Sg > 0.0 && FluidSystem::enableVaporizedWater() && FluidSystem::enableVaporizedOil()) {
Scalar po = (*this)[Indices::pressureSwitchIdx];
Scalar T = asImp_().temperature_();
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC, /*So*/ 0.0, Sg + solventSaturation_(), /*Sw=*/ 0.0, matParams);
Scalar pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
Scalar RvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
T,
pg);
setPrimaryVarsMeaning(Rvw_pg_Rv);
(*this)[Indices::pressureSwitchIdx] = pg;
(*this)[Indices::waterSaturationIdx] = RvwSat; //primary variable becomes Rvw
if constexpr (compositionSwitchEnabled) {
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
pg,
zFraction_())
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
Scalar(0),
SoMax);
(*this)[Indices::compositionSwitchIdx] = std::min(RvMax, RvSat);
}
return true;
}
Scalar So2 = 1.0 - Sw - solventSaturation_();
if (Sg < -eps && So2 > 0.0 && FluidSystem::enableDissolvedGas()) {
// the hydrocarbon gas phase disappeared and some oil phase is left,
// i.e., switch the primary variables to { Sw, po, Rs }.
//
// by a "lucky" coincidence the pressure switching variable already
// represents the oil phase pressure, so we do not need to change
// this. For the gas dissolution factor, we use the low-level blackoil
// PVT objects to calculate the mole fraction of gas saturated oil.
setPrimaryVarsMeaning(Sw_po_Rs);
if constexpr (compositionSwitchEnabled) {
Scalar po = (*this)[Indices::pressureSwitchIdx];
Scalar T = asImp_().temperature_();
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RsMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RsSat = enableExtbo ? ExtboModule::rs(pvtRegionIndex(),
po,
zFraction_())
: FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
T,
po,
So2,
SoMax);
(*this)[Indices::compositionSwitchIdx] =
std::min(RsMax, RsSat);
}
return true;
}
Scalar Sg2 = 1.0 - Sw - solventSaturation_();
if (So < -eps && Sg2 > 0.0 && FluidSystem::enableVaporizedOil()) {
// the oil phase disappeared and some hydrocarbon gas phase is still
// present, i.e., switch the primary variables to { Sw, pg, Rv }.
Scalar po = (*this)[Indices::pressureSwitchIdx];
// we only have the oil pressure readily available, but we need the gas
// pressure, i.e. we must determine capillary pressure
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC, /*So=*/0.0, Sg2 + solventSaturation_(), Sw, matParams);
Scalar pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
// we start at the Rv value that corresponds to that of oil-saturated
// hydrocarbon gas
setPrimaryVarsMeaning(Sw_pg_Rv);
(*this)[Indices::pressureSwitchIdx] = pg;
if constexpr (compositionSwitchEnabled) {
Scalar T = asImp_().temperature_();
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
pg,
zFraction_())
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
Scalar(0),
SoMax);
(*this)[Indices::compositionSwitchIdx] = std::min(RvMax, RvSat);
}
return true;
}
return false;
}
else if (primaryVarsMeaning() == Sw_po_Rs) {
assert(compositionSwitchEnabled);
// special case for cells with almost only water
if (Sw >= thresholdWaterFilledCell) {
// switch back to phase equilibrium mode if the oil phase vanishes (i.e.,
// the water-only case)
setPrimaryVarsMeaning(Sw_po_Sg);
if constexpr (waterEnabled)
(*this)[Indices::waterSaturationIdx] = 1.0; // water saturation
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
return true;
}
// Only the oil and the water phases are present. The hydrocarbon gas phase
// appears as soon as more of the gas component is present in the oil phase
// than what saturated oil can hold.
Scalar T = asImp_().temperature_();
Scalar po = (*this)[Indices::pressureSwitchIdx];
Scalar So = 1.0 - Sw - solventSaturation_();
Scalar SoMax = std::max(So, problem.maxOilSaturation(globalDofIdx));
Scalar RsMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RsSat = enableExtbo ? ExtboModule::rs(pvtRegionIndex(),
po,
zFraction_())
: FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
T,
po,
So,
SoMax);
Scalar Rs = (*this)[Indices::compositionSwitchIdx];
if (Rs > std::min(RsMax, RsSat*(1.0 + eps))) {
// the gas phase appears, i.e., switch the primary variables to { Sw, po,
// Sg }.
setPrimaryVarsMeaning(Sw_po_Sg);
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
return true;
}
return false;
}
else if (primaryVarsMeaning() == Rvw_po_Sg) {
Scalar po = (*this)[Indices::pressureSwitchIdx];
Scalar T = asImp_().temperature_();
Scalar Sg = 0.0;
if constexpr (compositionSwitchEnabled)
Sg = (*this)[Indices::compositionSwitchIdx];
Scalar So = 1.0 - Sg - solventSaturation_();
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC, So, Sg + solventSaturation_(), /*Sw=*/ 0.0, matParams);
Scalar pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
Scalar RvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
T,
pg);
Scalar Rvw = (*this)[Indices::waterSaturationIdx];
if (Rvw > RvwSat*(1.0 + eps)) {
// water phase appears
setPrimaryVarsMeaning(Sw_po_Sg);
(*this)[Indices::waterSaturationIdx] = 0.0; // water saturation
return true;
}
if (So < -eps && FluidSystem::enableVaporizedOil()) {
//oil phase dissappears
computeCapillaryPressures_(pC, /*So=*/ 0.0, Sg + solventSaturation_(), /*Sw=*/ 0.0, matParams);
pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
setPrimaryVarsMeaning(Rvw_pg_Rv);
(*this)[Indices::pressureSwitchIdx] = pg;
if constexpr (compositionSwitchEnabled) {
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
pg,
zFraction_())
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
Scalar(0),
SoMax);
(*this)[Indices::compositionSwitchIdx] = std::min(RvMax, RvSat);
}
return true;
}
return false;
}
else if (primaryVarsMeaning() == Rvw_pg_Rv) {
//only gas phase
Scalar pg = (*this)[Indices::pressureSwitchIdx];
Scalar T = asImp_().temperature_();
Scalar RvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
T,
pg);
Scalar Rvw = (*this)[Indices::waterSaturationIdx];
if (Rvw > RvwSat*(1.0 + eps)) {
// water phase appears
setPrimaryVarsMeaning(Sw_pg_Rv);
(*this)[Indices::waterSaturationIdx] = 0.0; // water saturation
return true;
}
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
pg,
zFraction_())
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
/*So=*/Scalar(0.0),
SoMax);
Scalar Rv = (*this)[Indices::compositionSwitchIdx];
if (Rv > std::min(RvMax, RvSat*(1.0 + eps))) {
// switch to phase equilibrium mode because the oil phase appears. here
// we also need the capillary pressures to calculate the oil phase
// pressure using the gas phase pressure
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC,
/*So=*/0.0,
/*Sg=*/1.0,
/*Sw=*/0.0,
matParams);
Scalar po = pg + (pC[oilPhaseIdx] - pC[gasPhaseIdx]);
setPrimaryVarsMeaning(Rvw_po_Sg);
(*this)[Indices::pressureSwitchIdx] = po;
(*this)[Indices::compositionSwitchIdx] = 1.0; // hydrocarbon gas saturation
return true;
}
return false;
}
else {
assert(primaryVarsMeaning() == Sw_pg_Rv);
assert(compositionSwitchEnabled);
Scalar T = asImp_().temperature_();
Scalar pg = (*this)[Indices::pressureSwitchIdx];
Scalar Sg = 1.0 - Sw - solventSaturation_();
// special case for cells with almost only water
if (Sw >= thresholdWaterFilledCell) {
// switch to phase equilibrium mode because the hydrocarbon gas phase
// disappears. here we need the capillary pressures to calculate the oil
// phase pressure using the gas phase pressure
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC,
/*So=*/0.0,
/*Sg=*/Sg + solventSaturation_(),
Sw,
matParams);
Scalar po = pg + (pC[oilPhaseIdx] - pC[gasPhaseIdx]);
setPrimaryVarsMeaning(Sw_po_Sg);
if constexpr (waterEnabled)
(*this)[Indices::waterSaturationIdx] = 1.0;
(*this)[Indices::pressureSwitchIdx] = po;
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
return true;
}
//water disappears
if(Sw < -eps && FluidSystem::enableVaporizedWater()) {
Scalar RvwSat = FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_,
T,
pg);
setPrimaryVarsMeaning(Rvw_pg_Rv);
(*this)[Indices::waterSaturationIdx] = RvwSat; //primary variable becomes Rvw
return true;
}
// Only the gas and the water phases are present. The oil phase appears as
// soon as more of the oil component is present in the hydrocarbon gas phase
// than what saturated gas contains. Note that we use the blackoil specific
// low-level PVT objects here for performance reasons.
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat = enableExtbo ? ExtboModule::rv(pvtRegionIndex(),
pg,
zFraction_())
: FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
/*So=*/Scalar(0.0),
SoMax);
Scalar Rv = (*this)[Indices::compositionSwitchIdx];
if (Rv > std::min(RvMax, RvSat*(1.0 + eps))) {
// switch to phase equilibrium mode because the oil phase appears. here
// we also need the capillary pressures to calculate the oil phase
// pressure using the gas phase pressure
std::array<Scalar, numPhases> pC = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC,
/*So=*/0.0,
/*Sg=*/Sg + solventSaturation_(),
Sw,
matParams);
Scalar po = pg + (pC[oilPhaseIdx] - pC[gasPhaseIdx]);
setPrimaryVarsMeaning(Sw_po_Sg);
(*this)[Indices::pressureSwitchIdx] = po;
(*this)[Indices::compositionSwitchIdx] = Sg; // hydrocarbon gas saturation
return true;
}
return false;
}
assert(false);
return false;
}
bool chopAndNormalizeSaturations(){
if (primaryVarsMeaning() == OnePhase_p){
return false;
}
Scalar Sw = 0.0;
if (waterEnabled && primaryVarsMeaning() != Rvw_po_Sg)
Sw = (*this)[Indices::waterSaturationIdx];
if (primaryVarsMeaning() == Sw_po_Sg) {
Scalar Sg = 0.0;
if constexpr (compositionSwitchEnabled)
Sg = (*this)[Indices::compositionSwitchIdx];
Scalar Ssol = 0.0;
if constexpr (enableSolvent)
Ssol =(*this) [Indices::solventSaturationIdx];
Scalar So = 1.0 - Sw - Sg - Ssol;
Sw = std::min(std::max(Sw,0.0),1.0);
So = std::min(std::max(So,0.0),1.0);
Sg = std::min(std::max(Sg,0.0),1.0);
Ssol = std::min(std::max(Ssol,0.0),1.0);
Scalar St = Sw + So + Sg + Ssol;
Sw = Sw/St;
Sg = Sg/St;
Ssol = Ssol/St;
assert(St>0.5);
if constexpr (waterEnabled)
(*this)[Indices::waterSaturationIdx]= Sw;
if constexpr (compositionSwitchEnabled)
(*this)[Indices::compositionSwitchIdx] = Sg;
if constexpr (enableSolvent)
(*this)[Indices::solventSaturationIdx] = Ssol;
return not(St==1);
}else if (primaryVarsMeaning() == Sw_po_Rs) {
Scalar Ssol = 0.0;
if constexpr (enableSolvent)
Ssol = (*this)[Indices::solventSaturationIdx];
Scalar So = 1.0 - Sw - Ssol;
Sw = std::min(std::max(Sw,0.0),1.0);
So = std::min(std::max(So,0.0),1.0);
Ssol = std::min(std::max(Ssol,0.0),1.0);
//Sg = 0.0;
Scalar St = Sw + So + Ssol;
assert(St>0.5);
Sw=Sw/St;
Ssol=Ssol/St;
if constexpr (waterEnabled)
(*this)[Indices::waterSaturationIdx]= Sw;
if constexpr (enableSolvent)
(*this)[Indices::solventSaturationIdx] = Ssol;
return not(St==1);
}else{
assert(primaryVarsMeaning() == Sw_pg_Rv);
assert(compositionSwitchEnabled);
Scalar Ssol=0.0;
if constexpr (enableSolvent)
Ssol = (*this)[Indices::solventSaturationIdx];
Scalar Sg = 1.0 - Sw - Ssol;
//So = 0.0;
Sw = std::min(std::max(Sw,0.0),1.0);
Sg = std::min(std::max(Sg,0.0),1.0);
Ssol = std::min(std::max(Ssol,0.0),1.0);
Scalar St = Sw + Sg + Ssol;
assert(St>0.5);
Sw=Sw/St;
Ssol=Ssol/St;
if constexpr (waterEnabled)
(*this)[Indices::waterSaturationIdx]= Sw;
if constexpr (enableSolvent)
(*this)[Indices::solventSaturationIdx] = Ssol;
return not(St==1);
}
assert(false);
}
BlackOilPrimaryVariables& operator=(const BlackOilPrimaryVariables& other) = default;
BlackOilPrimaryVariables& operator=(Scalar value)
{
for (unsigned i = 0; i < numEq; ++i)
(*this)[i] = value;
return *this;
}
/*!
* \brief Instruct valgrind to check the definedness of all attributes of this class.
*
* We cannot simply check the definedness of the whole object because there might be
* "alignedness holes" in the memory layout which are caused by the pseudo primary
* variables.
*/
void checkDefined() const
{
#ifndef NDEBUG
// check the "real" primary variables
for (unsigned i = 0; i < this->size(); ++i)
Valgrind::CheckDefined((*this)[i]);
// check the "pseudo" primary variables
Valgrind::CheckDefined(primaryVarsMeaning_);
Valgrind::CheckDefined(pvtRegionIdx_);
#endif // NDEBUG
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
Scalar solventSaturation_() const
{
if constexpr (enableSolvent)
return (*this)[Indices::solventSaturationIdx];
else
return 0.0;
}
Scalar zFraction_() const
{
if constexpr (enableExtbo)
return (*this)[Indices::zFractionIdx];
else
return 0.0;
}
Scalar polymerConcentration_() const
{
if constexpr (enablePolymer)
return (*this)[Indices::polymerConcentrationIdx];
else
return 0.0;
}
Scalar foamConcentration_() const
{
if constexpr (enableFoam)
return (*this)[Indices::foamConcentrationIdx];
else
return 0.0;
}
Scalar saltConcentration_() const
{
if constexpr (enableBrine)
return (*this)[Indices::saltConcentrationIdx];
else
return 0.0;
}
Scalar temperature_() const
{
if constexpr (enableEnergy)
return (*this)[Indices::temperatureIdx];
else
return FluidSystem::reservoirTemperature();
}
Scalar microbialConcentration_() const
{
if constexpr (enableMICP)
return (*this)[Indices::microbialConcentrationIdx];
else
return 0.0;
}
Scalar oxygenConcentration_() const
{
if constexpr (enableMICP)
return (*this)[Indices::oxygenConcentrationIdx];
else
return 0.0;
}
Scalar ureaConcentration_() const
{
if constexpr (enableMICP)
return (*this)[Indices::ureaConcentrationIdx];
else
return 0.0;
}
Scalar biofilmConcentration_() const
{
if constexpr (enableMICP)
return (*this)[Indices::biofilmConcentrationIdx];
else
return 0.0;
}
Scalar calciteConcentration_() const
{
if constexpr (enableMICP)
return (*this)[Indices::calciteConcentrationIdx];
else
return 0.0;
}
template <class Container>
void computeCapillaryPressures_(Container& result,
Scalar So,
Scalar Sg,
Scalar Sw,
const MaterialLawParams& matParams) const
{
using SatOnlyFluidState = SimpleModularFluidState<Scalar,
numPhases,
numComponents,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false>;
SatOnlyFluidState fluidState;
fluidState.setSaturation(waterPhaseIdx, Sw);
fluidState.setSaturation(oilPhaseIdx, So);
fluidState.setSaturation(gasPhaseIdx, Sg);
MaterialLaw::capillaryPressures(result, matParams, fluidState);
}
PrimaryVarsMeaning primaryVarsMeaning_;
PrimaryVarsMeaningBrine primaryVarsMeaningBrine_;
unsigned short pvtRegionIdx_;
};
} // namespace Opm
#endif