opm-simulators/opm/polymer/fullyimplicit/FullyImplicitTwophasePolymerSolver.cpp

838 lines
30 KiB
C++

#include <opm/polymer/fullyimplicit/FullyImplicitTwophasePolymerSolver.hpp>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <opm/polymer/fullyimplicit/AutoDiffBlock.hpp>
#include <opm/polymer/fullyimplicit/AutoDiffHelpers.hpp>
#include <opm/polymer/fullyimplicit/IncompPropsAdInterface.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/PolymerState.hpp>
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/well_controls.h>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <Eigen/Eigen>
#include <algorithm>
namespace Opm {
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
struct Chop01 {
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
};
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
{
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int dim = grid.dimensions;
V wdp = V::Zero(nperf,1);
assert(wdp.size() == rho.size());
// Main loop, iterate over all perforations,
// using the following formula:
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
// [although this is computed on the outside of this function].
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells.depth_ref[w];
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
const int cell = wells.well_cells[j];
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
}
}
return wdp;
}
}//anonymous namespace
FullyImplicitTwophasePolymerSolver::
FullyImplicitTwophasePolymerSolver(const UnstructuredGrid& grid,
const IncompPropsAdInterface& fluid,
const PolymerPropsAd& polymer_props_ad,
const LinearSolverInterface& linsolver,
const Wells& wells,
const double* gravity)
: grid_ (grid)
, fluid_(fluid)
, polymer_props_ad_ (polymer_props_ad)
, linsolver_(linsolver)
, wells_(wells)
, gravity_(gravity)
, cells_ (buildAllCells(grid.number_of_cells))
, ops_(grid)
, wops_(wells)
// , mob_(std::vector<ADB>(fluid.numPhases() + 1, ADB::null()))
, cmax_(V::Zero(grid.number_of_cells))
, rq_(fluid.numPhases() + 1)
, residual_( { std::vector<ADB>(fluid.numPhases() + 1, ADB::null()), ADB::null(), ADB::null()})
{
}
FullyImplicitTwophasePolymerSolver::
WellOps::WellOps(const Wells& wells)
: w2p(wells.well_connpos[ wells.number_of_wells ],
wells.number_of_wells)
, p2w(wells.number_of_wells,
wells.well_connpos[ wells.number_of_wells ])
{
const int nw = wells.number_of_wells;
const int* const wpos = wells.well_connpos;
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> scatter, gather;
scatter.reserve(wpos[nw]);
gather .reserve(wpos[nw]);
for (int w = 0, i = 0; w < nw; ++w) {
for (; i < wpos[ w + 1 ]; ++i) {
scatter.push_back(Tri(i, w, 1.0));
gather .push_back(Tri(w, i, 1.0));
}
}
w2p.setFromTriplets(scatter.begin(), scatter.end());
p2w.setFromTriplets(gather .begin(), gather .end());
}
void
FullyImplicitTwophasePolymerSolver::
step(const double dt,
PolymerState& x,
WellState& xw,
const std::vector<double>& polymer_inflow)
{
V pvol(grid_.number_of_cells);
// Pore volume
const V::Index nc = grid_.number_of_cells;
V rho = V::Constant(pvol.size(), 1, *fluid_.porosity());
std::transform(grid_.cell_volumes, grid_.cell_volumes + nc,
rho.data(), pvol.data(),
std::multiplies<double>());
const V pvdt = pvol / dt;
const SolutionState old_state = constantState(x, xw);
computeAccum(old_state, 0);
const double atol = 1.0e-12;
const double rtol = 5.0e-8;
const int maxit = 40;
assemble(pvdt, old_state, x, xw, polymer_inflow);
const double r0 = residualNorm();
int it = 0;
std::cout << "\nIteration Residual\n"
<< std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r0 << std::endl;
bool resTooLarge = r0 > atol;
while (resTooLarge && (it < maxit)) {
const V dx = solveJacobianSystem();
updateState(dx, x, xw);
assemble(pvdt, old_state, x, xw, polymer_inflow);
const double r = residualNorm();
resTooLarge = (r > atol) && (r > rtol*r0);
it += 1;
std::cout << std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r << std::endl;
}
if (resTooLarge) {
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
}
}
FullyImplicitTwophasePolymerSolver::ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, head ( ADB::null())
, mob ( ADB::null())
{
}
FullyImplicitTwophasePolymerSolver::SolutionState::SolutionState(const int np)
: pressure ( ADB::null())
, saturation (np, ADB::null())
, concentration ( ADB::null())
, qs ( ADB::null())
, bhp ( ADB::null())
{
}
FullyImplicitTwophasePolymerSolver::SolutionState
FullyImplicitTwophasePolymerSolver::constantState(const PolymerState& x,
const WellState& xw)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
// The block pattern assumes the following primary variables:
// pressure
// water saturation
// polymer concentration
// well surface rates
// well bottom-hole pressure
// Note that oil is assumed to always be present, but is never
// a primary variable.
std::vector<int> bpat(np + 1, nc);
bpat.push_back(xw.bhp().size() * np);
bpat.push_back(xw.bhp().size());
SolutionState state(np);
// Pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc);
state.pressure = ADB::constant(p);
// Saturation.
assert (not x.saturation().empty());
const DataBlock s_all = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
for (int phase = 0; phase < np; ++phase) {
state.saturation[phase] = ADB::constant(s_all.col(phase));
}
// Concentration
assert(not x.concentration().empty());
const V c = Eigen::Map<const V>(&x.concentration()[0], nc);
state.concentration = ADB::constant(c);
// Well rates.
assert (not xw.wellRates().empty());
// Need to reshuffle well rates, from ordered by wells, then phase,
// to ordered by phase, then wells.
const int nw = wells_.number_of_wells;
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
const V qs = Eigen::Map<const V>(wrates.data(), nw * np);
state.qs = ADB::constant(qs, bpat);
// Bottom hole pressure.
assert (not xw.bhp().empty());
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
state.bhp = ADB::constant(bhp, bpat);
return state;
}
FullyImplicitTwophasePolymerSolver::SolutionState
FullyImplicitTwophasePolymerSolver::variableState(const PolymerState& x,
const WellState& xw)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
std::vector<V> vars0;
vars0.reserve(np + 3);
// Initial pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc);
vars0.push_back(p);
// Initial saturation.
assert (not x.saturation().empty());
const DataBlock s_all = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const V sw = s_all.col(0);
vars0.push_back(sw);
// Initial concentration.
assert (not x.concentration().empty());
const V c = Eigen::Map<const V>(&x.concentration()[0], nc);
vars0.push_back(c);
// Initial well rates.
assert (not xw.wellRates().empty());
// Need to reshuffle well rates, from ordered by wells, then phase,
// to ordered by phase, then wells.
const int nw = wells_.number_of_wells;
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
const V qs = Eigen::Map<const V>(wrates.data(), nw * np);
vars0.push_back(qs);
// Initial well bottom hole pressure.
assert (not xw.bhp().empty());
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
vars0.push_back(bhp);
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState state(np);
// Pressure.
int nextvar = 0;
state.pressure = vars[ nextvar++ ];
// Saturation.
const std::vector<int>& bpat = vars[0].blockPattern();
{
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
ADB sw = vars[ nextvar++ ];
state.saturation[0] = sw;
so = so - sw;
state.saturation[1] = so;
}
// Concentration.
state.concentration = vars[nextvar++];
// Qs.
state.qs = vars[ nextvar++ ];
// BHP.
state.bhp = vars[ nextvar++ ];
assert(nextvar == int(vars.size()));
return state;
}
ADB
FullyImplicitTwophasePolymerSolver::
computeCmax(const ADB& c)
{
const int nc = grid_.number_of_cells;
for (int i = 0; i < nc; ++i) {
cmax_(i) = std::max(cmax_(i), c.value()(i));
}
return ADB::constant(cmax_, c.blockPattern());
}
void
FullyImplicitTwophasePolymerSolver::
computeAccum(const SolutionState& state,
const int aix )
{
const std::vector<ADB>& sat = state.saturation;
const ADB& c = state.concentration;
rq_[0].accum[aix] = sat[0];
rq_[1].accum[aix] = sat[1];
const ADB cmax = computeCmax(state.concentration);
const ADB ads = polymer_props_ad_.adsorption(state.concentration, cmax);
const double rho_rock = polymer_props_ad_.rockDensity();
const V phi = Eigen::Map<const V>(&fluid_.porosity()[0], grid_.number_of_cells, 1);
const double dead_pore_vol = polymer_props_ad_.deadPoreVol();
rq_[2].accum[aix] = sat[0] * c * (1. - dead_pore_vol) + rho_rock * (1. - phi) / phi * ads;
}
void
FullyImplicitTwophasePolymerSolver::
assemble(const V& pvdt,
const SolutionState& old_state,
const PolymerState& x,
const WellState& xw,
const std::vector<double>& polymer_inflow)
{
// Create the primary variables.
const SolutionState state = variableState(x, xw);
computeAccum(state, 1);
// -------- Mass balance equations for water and oil --------
const V trans = subset(transmissibility(), ops_.internal_faces);
const std::vector<ADB> kr = computeRelPerm(state);
const ADB cmax = computeCmax(state.concentration);
// const ADB ads = polymer_props_ad_.adsorption(state.concentration, cmax);
const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration, cmax, kr[0], state.saturation[0]);
const ADB mc = computeMc(state);
computeMassFlux(trans, mc, kr[1], krw_eff, state);
//const std::vector<ADB> source = accumSource(kr[1], krw_eff, state.concentration, src, polymer_inflow);
// const std::vector<ADB> source = polymerSource();
// const double rho_r = polymer_props_ad_.rockDensity();
// const V phi = V::Constant(pvdt.size(), 1, *fluid_.porosity());
// const double dead_pore_vol = polymer_props_ad_.deadPoreVol();
// residual_.mass_balance[0] = pvdt * (state.saturation[0] - old_state.saturation[0])
// + ops_.div * mflux[0];
// residual_.mass_balance[1] = pvdt * (state.saturation[1] - old_state.saturation[1])
// + ops_.div * mflux[1];
// Mass balance equation for polymer
// residual_.mass_balance[2] = pvdt * (state.saturation[0] * state.concentration
// - old_state.saturation[0] * old_state.concentration) * (1. - dead_pore_vol)
// + pvdt * rho_r * (1. - phi) / phi * ads
// + ops_.div * mflux[2];
residual_.mass_balance[0] = pvdt*(rq_[0].accum[1] - rq_[0].accum[0])
+ ops_.div*rq_[0].mflux;
residual_.mass_balance[1] = pvdt*(rq_[1].accum[1] - rq_[1].accum[0])
+ ops_.div*rq_[1].mflux;
residual_.mass_balance[2] = pvdt*(rq_[2].accum[1] - rq_[2].accum[0])
+ ops_.div*rq_[2].mflux;
// -------- Well equation, and well contributions to the mass balance equations --------
// Contribution to mass balance will have to wait.
const int nc = grid_.number_of_cells;
const int np = wells_.number_of_phases;
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
const V transw = Eigen::Map<const V>(wells_.WI, nperf);
const ADB& bhp = state.bhp;
const DataBlock well_s = wops_.w2p * Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np).matrix();
// Extract variables for perforation cell pressures
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(state.pressure, well_cells);
// Finally construct well perforation pressures and well flows.
// Compute well pressure differentials.
// Construct pressure difference vector for wells.
const int dim = grid_.dimensions;
if (gravity_) {
for (int dd = 0; dd < dim -1; ++dd) {
assert(g[dd] == 0.0);
}
}
ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern());
for (int phase = 0; phase < 2; ++phase) {
// For incompressible flow cell rho is the same.
const ADB cell_rho = fluidDensity(phase, state.pressure);
cell_rho_total += state.saturation[phase] * cell_rho;
}
ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
assert(np == wells_.number_of_phases);
const DataBlock compi = Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np);
for (int phase = 0; phase < 2; ++phase) {
const ADB cell_rho = fluidDensity(phase, state.pressure);
const V fraction = compi.col(phase);
inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells);
}
const V rho_perf_cell = subset(cell_rho_total, well_cells).value();
const V rho_perf_well = inj_rho_total.value();
V prodperfs = V::Constant(nperf, -1.0);
for (int w = 0; w < nw; ++w) {
if (wells_.type[w] == PRODUCER) {
std::fill(prodperfs.data() + wells_.well_connpos[w],
prodperfs.data() + wells_.well_connpos[w+1], 1.0);
}
}
const Selector<double> producer(prodperfs);
const V rho_perf = producer.select(rho_perf_cell, rho_perf_well);
const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, gravity_ ? gravity_[dim - 1] : 0.0);
const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp;
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
// DUMP(nkgradp_well);
const Selector<double> cell_to_well_selector(nkgradp_well.value());
ADB well_rates_all = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern());
ADB perf_total_mob = subset(rq_[0].mob, well_cells) + subset(rq_[1].mob, well_cells);
std::vector<ADB> well_contribs(np, ADB::null());
std::vector<ADB> well_perf_rates(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
// const ADB& cell_b = rq_[phase].b;
// const ADB perf_b = subset(cell_b, well_cells);
const ADB& cell_mob = rq_[phase].mob;
const V well_fraction = compi.col(phase);
// Using total mobilities for all phases for injection.
const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob;
const ADB perf_mob = producer.select(subset(cell_mob, well_cells),
perf_mob_injector);
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
well_perf_rates[phase] = perf_flux;
const ADB well_rates = wops_.p2w * well_perf_rates[phase];
well_rates_all += superset(well_rates, Span(nw, 1, phase*nw), nw*np);
// const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
well_contribs[phase] = superset(perf_flux, well_cells, nc);
// DUMP(well_contribs[phase]);
residual_.mass_balance[phase] += well_contribs[phase];
}
// well rates contribs to polymer mass balance eqn.
// for injection wells.
const V polyin = Eigen::Map<const V>(& polymer_inflow[0], nc);
const V poly_in_perf = subset(polyin, well_cells);
const V poly_c_cell = subset(state.concentration, well_cells).value();
const V poly_c = producer.select(poly_c_cell, poly_in_perf);
residual_.mass_balance[2] += superset(well_perf_rates[0] * poly_c, well_cells, nc);
// Set the well flux equation
residual_.well_flux_eq = state.qs + well_rates_all;
// DUMP(residual_.well_flux_eq);
// Handling BHP and SURFACE_RATE wells.
V bhp_targets(nw);
V rate_targets(nw);
M rate_distr(nw, np*nw);
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells_.ctrls[w];
if (well_controls_get_current_type(wc) == BHP) {
bhp_targets[w] = well_controls_get_current_target(wc);
rate_targets[w] = -1e100;
} else if (well_controls_get_current_type(wc) == SURFACE_RATE) {
bhp_targets[w] = -1e100;
rate_targets[w] = well_controls_get_current_target(wc);
{
const double* distr = well_controls_get_current_distr(wc);
for (int phase = 0; phase < np; ++phase) {
rate_distr.insert(w, phase*nw + w) = distr[phase];
}
}
} else {
OPM_THROW(std::runtime_error, "Can only handle BHP type controls.");
}
}
const ADB bhp_residual = bhp - bhp_targets;
const ADB rate_residual = rate_distr * state.qs - rate_targets;
// Choose bhp residual for positive bhp targets.
Selector<double> bhp_selector(bhp_targets);
residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual);
// residual_.well_eq = bhp_residual;
}
void
FullyImplicitTwophasePolymerSolver::computeMassFlux(const V& trans,
const ADB& mc,
const ADB& kro,
const ADB& krw_eff,
const SolutionState& state )
{
const double* mus = fluid_.viscosity();
ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mus);
rq_[0].mob = krw_eff * inv_wat_eff_vis;
rq_[1].mob = kro / V::Constant(kro.size(), 1, mus[1]);
rq_[2].mob = mc * krw_eff * inv_wat_eff_vis;
const int nc = grid_.number_of_cells;
V z(nc);
// Compute z coordinates
for (int c = 0; c < nc; ++c){
z[c] = grid_.cell_centroids[c * 3 + 2];
}
for (int phase = 0; phase < 2; ++phase) {
const ADB rho = fluidDensity(phase, state.pressure);
ADB& head = rq_[phase].head;
const ADB rhoavg = ops_.caver * rho;
const ADB dp = ops_.ngrad * state.pressure
- gravity_[2] * (rhoavg * (ops_.ngrad * z.matrix()));
head = trans * dp;
UpwindSelector<double> upwind(grid_, ops_, head.value());
const ADB& mob = rq_[phase].mob;
rq_[phase].mflux = upwind.select(mob) * head;
}
rq_[2].head = rq_[0].head;
UpwindSelector<double> upwind(grid_, ops_, rq_[2].head.value());
rq_[2].mflux = upwind.select(rq_[2].mob) * rq_[2].head;
}
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::accumSource(const ADB& kro,
const ADB& krw_eff,
const ADB& c,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow_c) const
{
//extract the source to out and in source.
std::vector<double> outsrc;
std::vector<double> insrc;
std::vector<double>::const_iterator it;
for (it = src.begin(); it != src.end(); ++it) {
if (*it < 0) {
outsrc.push_back(*it);
insrc.push_back(0.0);
} else if (*it > 0) {
insrc.push_back(*it);
outsrc.push_back(0.0);
} else {
outsrc.push_back(0);
insrc.push_back(0);
}
}
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
// compute the out-fracflow.
const std::vector<ADB> f = computeFracFlow();
// compute the in-fracflow.
V zero = V::Zero(grid_.number_of_cells);
V one = V::Ones(grid_.number_of_cells);
std::vector<ADB> source;
//water source
source.push_back(f[0] * outSrc + one * inSrc);
//oil source
source.push_back(f[1] * outSrc + zero * inSrc);
//polymer source
source.push_back(f[0] * outSrc * c + one * inSrc * polyin);
return source;
}
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::computeFracFlow() const
{
ADB total_mob = rq_[0].mob + rq_[1].mob;
std::vector<ADB> fracflow;
fracflow.push_back(rq_[0].mob / total_mob);
fracflow.push_back(rq_[1].mob / total_mob);
return fracflow;
}
V
FullyImplicitTwophasePolymerSolver::solveJacobianSystem() const
{
const int np = fluid_.numPhases();
if (np != 2) {
OPM_THROW(std::logic_error, "Only two-phase ok in FullyImplicitTwophasePolymerSolver.");
}
ADB mass_res = vertcat(residual_.mass_balance[0], residual_.mass_balance[1]);
mass_res = vertcat(mass_res, residual_.mass_balance[2]);
ADB well_res = vertcat(residual_.well_flux_eq, residual_.well_eq);
ADB total_res = collapseJacs(vertcat(mass_res, well_res));
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_res.derivative()[0];
V dx(V::Zero(total_res.size()));
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_.solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_res.value().data(), dx.data());
if (!rep.converged) {
OPM_THROW(std::runtime_error,
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
"Linear solver convergence failure.");
}
return dx;
}
void FullyImplicitTwophasePolymerSolver::updateState(const V& dx,
PolymerState& state,
WellState& well_state) const
{
const int np = fluid_.numPhases();
const int nc = grid_.number_of_cells;
const int nw = wells_.number_of_wells;
const V one = V::Constant(nc, 1.0);
// Extract parts of dx corresponding to each part.
const V dp = subset(dx, Span(nc));
int varstart = nc;
const V dsw = subset(dx, Span(nc, 1, varstart));
varstart += dsw.size();
const V dc = subset(dx, Span(nc, 1, varstart));
varstart += dc.size();
const V dqs = subset(dx, Span(np*nw, 1, varstart));
varstart += dqs.size();
const V dbhp = subset(dx, Span(nw, 1, varstart));
varstart += dbhp.size();
assert(varstart == dx.size());
// Pressure update.
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc);
const V p = p_old - dp;
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
// Saturation updates.
const double dsmax = 0.3;
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
V so = one;
const V sw_old = s_old.col(0);
const V dsw_limited = sign(dsw) * dsw.abs().min(dsmax);
const V sw = (sw_old - dsw_limited).unaryExpr(Chop01());
so -= sw;
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np] = sw[c];
state.saturation()[c*np + 1] = so[c];
}
// Concentration updates.
const V c_old = Eigen::Map<const V>(&state.concentration()[0], nc);
const V c = c_old - dc;
std::copy(&c[0], &c[0] + nc, state.concentration().begin());
// Qs update.
// Since we need to update the wellrates, that are ordered by wells,
// from dqs which are ordered by phase, the simplest is to compute
// dwr, which is the data from dqs but ordered by wells.
const DataBlock wwr = Eigen::Map<const DataBlock>(dqs.data(), np, nw).transpose();
const V dwr = Eigen::Map<const V>(wwr.data(), nw*np);
const V wr_old = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np);
const V wr = wr_old - dwr;
std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin());
// Bhp update.
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
const V bhp = bhp_old - dbhp;
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
}
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::computeRelPerm(const SolutionState& state) const
{
const ADB sw = state.saturation[0];
const ADB so = state.saturation[1];
return fluid_.relperm(sw, so, cells_);
}
double
FullyImplicitTwophasePolymerSolver::residualNorm() const
{
double r = 0;
for (std::vector<ADB>::const_iterator
b = residual_.mass_balance.begin(),
e = residual_.mass_balance.end();
b != e; ++b)
{
r = std::max(r, (*b).value().matrix().lpNorm<Eigen::Infinity>());
}
r = std::max(r, residual_.well_flux_eq.value().matrix().lpNorm<Eigen::Infinity>());
r = std::max(r, residual_.well_eq.value().matrix().lpNorm<Eigen::Infinity>());
return r;
}
ADB
FullyImplicitTwophasePolymerSolver::fluidDensity(const int phase,
const ADB p) const
{
const double* rhos = fluid_.surfaceDensity();
ADB rho = ADB::constant(V::Constant(grid_.number_of_cells, 1, rhos[phase]),
p.blockPattern());
return rho;
}
V
FullyImplicitTwophasePolymerSolver::transmissibility() const
{
const V::Index nc = grid_.number_of_cells;
V htrans(grid_.cell_facepos[nc]);
V trans(grid_.cell_facepos[nc]);
UnstructuredGrid* ug = const_cast<UnstructuredGrid*>(& grid_);
tpfa_htrans_compute(ug, fluid_.permeability(), htrans.data());
tpfa_trans_compute (ug, htrans.data(), trans.data());
return trans;
}
// here mc means m(c) * c.
ADB
FullyImplicitTwophasePolymerSolver::computeMc(const SolutionState& state) const
{
ADB c = state.concentration;
return polymer_props_ad_.polymerWaterVelocityRatio(c);
}
}//namespace Opm