opm-simulators/examples/tutorialproblem_coupled.hh
Andreas Lauser 5acce6b68e restructure the directory structure of the implicit models
this is somewhat similar to what is currently done in the 'implicit'
branch of dumux, but it takes things further:

- ewoms/boxmodels/common -> ewoms/disc/vcfv
  (vcfv == vertex centered finite volumes)
- ewoms/boxmodels/vtk -> ewoms/vtk
  (possibly this will move to ewoms/io/vtk, TBD)
- ewoms/boxmodels -> ewoms/models
- test/boxmodels -> test/implicit
- the files for the common VCFV code have been renamed from "box*" to
  "vcfv\1" and the classes they contain have been renamed accordingly.

The rationale is to reflect the fact that multiple discretizations may
be chosen for any physical model. (Once these discretizations are
implemented, obviously.) All tests still compile for the autotools and
cmake build systems
2012-11-28 16:04:43 +01:00

274 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2009-2012 by Andreas Lauser *
* Copyright (C) 2010-2012 by Klaus Mosthaf *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \copydoc Ewoms::TutorialProblemCoupled
*/
#ifndef EWOMS_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/
#define EWOMS_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/
// The numerical model
#include <ewoms/models/immiscible/immisciblemodel.hh>
// The chemical species that are used
#include <ewoms/material/components/simpleh2o.hh>
#include <ewoms/material/components/lnapl.hh>
// The material laws
#include <ewoms/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh> /*@\label{tutorial-coupled:rawLawInclude}@*/
#include <ewoms/material/fluidmatrixinteractions/2p/efftoabslaw.hh>
#include <ewoms/material/fluidmatrixinteractions/mp/2padapter.hh>
// For the DUNE grid
#include <dune/grid/yaspgrid.hh> /*@\label{tutorial-coupled:include-grid-manager}@*/
#include <ewoms/common/cubegridcreator.hh> /*@\label{tutorial-coupled:include-grid-creator}@*/
// For Dune::FieldMatrix
#include <dune/common/fmatrix.hh>
namespace Ewoms {
// forward declaration of the problem class
template <class TypeTag>
class TutorialProblemCoupled;
namespace Properties {
// Create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(VcfvImmiscibleTwoPhase)); /*@\label{tutorial-coupled:create-type-tag}@*/
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
{ typedef Ewoms::TutorialProblemCoupled<TypeTag> type;};
// Set grid and the grid creator to be used
SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid</*dim=*/2>); /*@\label{tutorial-coupled:set-grid}@*/
SET_TYPE_PROP(TutorialProblemCoupled, GridCreator, Ewoms::CubeGridCreator<TypeTag>); /*@\label{tutorial-coupled:set-gridcreator}@*/
// Set the wetting phase /*@\label{tutorial-coupled:2p-system-start}@*/
SET_TYPE_PROP(TutorialProblemCoupled, WettingPhase, /*@\label{tutorial-coupled:wettingPhase}@*/
Ewoms::LiquidPhase<typename GET_PROP_TYPE(TypeTag, Scalar),
Ewoms::SimpleH2O<typename GET_PROP_TYPE(TypeTag, Scalar)> >);
// Set the non-wetting phase
SET_TYPE_PROP(TutorialProblemCoupled, NonwettingPhase, /*@\label{tutorial-coupled:nonwettingPhase}@*/
Ewoms::LiquidPhase<typename GET_PROP_TYPE(TypeTag, Scalar),
Ewoms::LNAPL<typename GET_PROP_TYPE(TypeTag, Scalar)> >); /*@\label{tutorial-coupled:2p-system-end}@*/
// Set the material law
SET_PROP(TutorialProblemCoupled, MaterialLaw)
{
private:
// Retrieve the C++ type used to represent scalar values
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
// Select the base material law to be used
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
// Converts absolute saturations into effective ones before
// passing it to the base material law
typedef EffToAbsLaw<RawMaterialLaw> TwoPMaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/
// Retrieve the index of the wetting phase
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
public:
// Convert two-phase material law into a general M-phase one.
typedef TwoPAdapter<wPhaseIdx, TwoPMaterialLaw> type;
};
// Disable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
// define how long the simulation should run [s] /*@\label{tutorial-coupled:default-params-begin}@*/
SET_SCALAR_PROP(TutorialProblemCoupled, EndTime, 100e3);
// define the size of the initial time step [s]
SET_SCALAR_PROP(TutorialProblemCoupled, InitialTimeStepSize, 125.0);
// define the physical size of the problem's domain [m]
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeX, 300.0); /*@\label{tutorial-coupled:grid-default-params-begin}@*/
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeY, 60.0);
SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeZ, 0.0);
// // define the number of cells used for discretizing the physical domain
SET_INT_PROP(TutorialProblemCoupled, CellsX, 100);
SET_INT_PROP(TutorialProblemCoupled, CellsY, 1);
SET_INT_PROP(TutorialProblemCoupled, CellsZ, 1); /*@\label{tutorial-coupled:default-params-end}@*/
} // namespace Properties
//! Tutorial problem using the fully-implicit immiscible model.
template <class TypeTag>
class TutorialProblemCoupled
: public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial-coupled:def-problem}@*/
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
// Grid dimension
enum { dimWorld = GridView::dimensionworld };
// The type of the intrinsic permeability tensor
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
// eWoms specific types are specified via the property system
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/
// phase indices
enum { numPhases = FluidSystem::numPhases };
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
enum { nPhaseIdx = FluidSystem::nPhaseIdx };
// Indices of the conservation equations
enum { contiWEqIdx = Indices::conti0EqIdx + wPhaseIdx };
enum { contiNEqIdx = Indices::conti0EqIdx + nPhaseIdx };
public:
//! The constructor of the problem
TutorialProblemCoupled(TimeManager &timeManager)
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
, eps_(3e-6)
{
// Use an isotropic and homogeneous intrinsic permeability
K_ = this->toDimMatrix_(1e-7);
// Parameters of the Brooks-Corey law
materialParams_.setPe(500.0); // entry pressure [Pa] /*@\label{tutorial-coupled:setLawParams}@*/
materialParams_.setLambda(2); // shape parameter
// Set the residual saturations
materialParams_.setSwr(0.0);
materialParams_.setSnr(0.0);
}
//! Specifies the problem name. This is used for files generated by the simulation.
const char *name() const
{ return "tutorial_coupled"; }
//! Returns the temperature at a given position.
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return 283.15; }
//! Returns the intrinsic permeability tensor [m^2] at a position.
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial-coupled:permeability}@*/
int spaceIdx, int timeIdx) const
{ return K_; }
//! Defines the porosity [-] of the medium at a given position
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const /*@\label{tutorial-coupled:porosity}@*/
{ return 0.2; }
//! Returns the parameter object for the material law at a given position
template <class Context>
const MaterialLawParams& materialLawParams(const Context &context, /*@\label{tutorial-coupled:matLawParams}@*/
int spaceIdx, int timeIdx) const
{ return materialParams_; }
//! Evaluates the boundary conditions.
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context, int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (pos[0] < eps_) {
// Free-flow conditions on left boundary
const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
ImmiscibleFluidState<Scalar, FluidSystem> fs;
Scalar Sw = 1.0;
fs.setSaturation(wPhaseIdx, Sw);
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, materialParams, fs);
fs.setPressure(wPhaseIdx, 200e3);
fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (pos[0] > this->bboxMax()[0] - eps_) {
// forced outflow at the right boundary
RateVector massRate(0.0);
massRate[contiWEqIdx] = 0.0; // [kg / (s m^2)]
massRate[contiNEqIdx] = 3e-2; // [kg / (s m^2)]
values.setMassRate(massRate);
}
else // no flow at the remaining boundaries
values.setNoFlow();
}
//! Evaluates the source term for all conserved quantities at a given position
//! of the domain [kg/(m^3 * s)]. Positive values mean that mass is created.
template <class Context>
void source(RateVector &source, const Context &context, int spaceIdx, int timeIdx) const
{
source[contiWEqIdx] = 0.0;
source[contiNEqIdx] = 0.0;
}
//! Evaluates the initial value at a given position in the domain.
template <class Context>
void initial(PrimaryVariables &values,
const Context &context, int spaceIdx, int timeIdx) const
{
ImmiscibleFluidState<Scalar, FluidSystem> fs;
// the domain is initially fully saturated by LNAPL
Scalar Sw = 0.0;
fs.setSaturation(wPhaseIdx, Sw);
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
// the temperature is given by the temperature() method
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
// set pressure of the wetting phase to 200 kPa = 2 bar
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx), fs);
fs.setPressure(wPhaseIdx, 200e3);
fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]);
values.assignNaive(fs);
}
private:
DimMatrix K_;
// Object that holds the values/parameters of the selected material law.
MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/
// small epsilon value
Scalar eps_;
};
} // namespace Ewoms
#endif