mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 09:16:27 -06:00
812 lines
28 KiB
C++
812 lines
28 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::ReservoirProblem
|
|
*/
|
|
#ifndef EWOMS_RESERVOIR_PROBLEM_HH
|
|
#define EWOMS_RESERVOIR_PROBLEM_HH
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
|
|
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
|
|
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
|
|
|
|
#include <opm/models/blackoil/blackoilproperties.hh>
|
|
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
|
|
#include <opm/models/nonlinear/newtonmethodparameters.hh>
|
|
|
|
#include <opm/models/utils/basicproperties.hh>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class ReservoirProblem;
|
|
|
|
} // namespace Opm
|
|
|
|
namespace Opm::Properties {
|
|
|
|
|
|
namespace TTag {
|
|
|
|
struct ReservoirBaseProblem {};
|
|
|
|
} // namespace TTag
|
|
|
|
// Set the grid type
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::ReservoirBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::ReservoirBaseProblem> { using type = Opm::ReservoirProblem<TypeTag>; };
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::ReservoirBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
using Traits = Opm::
|
|
ThreePhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
public:
|
|
using type = Opm::LinearMaterial<Traits>;
|
|
};
|
|
|
|
// Enable constraint DOFs?
|
|
template<class TypeTag>
|
|
struct EnableConstraints<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = true; };
|
|
|
|
/*!
|
|
* \brief Explicitly set the fluid system to the black-oil fluid system
|
|
*
|
|
* If the black oil model is used, this is superfluous because that model already sets
|
|
* the FluidSystem property. Setting it explictly for the problem is a good idea anyway,
|
|
* though because other models are more generic and thus do not assume a particular fluid
|
|
* system.
|
|
*/
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::ReservoirBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
using type = Opm::BlackOilFluidSystem<Scalar>;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm::Parameters {
|
|
|
|
// Maximum depth of the reservoir
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct MaxDepth { using type = Properties::UndefinedProperty; };
|
|
|
|
// The temperature inside the reservoir
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct Temperature { using type = Properties::UndefinedProperty; };
|
|
|
|
// The width of producer/injector wells as a fraction of the width of the spatial domain
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct WellWidth { using type = Properties::UndefinedProperty; };
|
|
|
|
// Enable gravity
|
|
template<class TypeTag>
|
|
struct EnableGravity<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{ static constexpr bool value = true; };
|
|
|
|
//! The default for the end time of the simulation [s].
|
|
//!
|
|
//! By default this problem spans 1000 days (100 "settle down" days and 900 days of
|
|
//! production)
|
|
template<class TypeTag>
|
|
struct EndTime<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 1000.0*24*60*60;
|
|
};
|
|
|
|
// The default DGF file to load
|
|
template<class TypeTag>
|
|
struct GridFile<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{ static constexpr auto value = "data/reservoir.dgf"; };
|
|
|
|
// The default for the initial time step size of the simulation [s]
|
|
template<class TypeTag>
|
|
struct InitialTimeStepSize<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 100e3;
|
|
};
|
|
|
|
// set the defaults for some problem specific properties
|
|
template<class TypeTag>
|
|
struct MaxDepth<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 2500;
|
|
};
|
|
|
|
// Write the Newton convergence behavior to disk?
|
|
template<class TypeTag>
|
|
struct NewtonWriteConvergence<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{ static constexpr bool value = false; };
|
|
|
|
// increase the tolerance for this problem to get larger time steps
|
|
template<class TypeTag>
|
|
struct NewtonTolerance<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 1e-6;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct Temperature<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 293.15;
|
|
};
|
|
|
|
// The width of producer/injector wells as a fraction of the width of the spatial domain
|
|
template<class TypeTag>
|
|
struct WellWidth<TypeTag, Properties::TTag::ReservoirBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 0.01;
|
|
};
|
|
|
|
} // namespace Opm::Parameters
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Some simple test problem for the black-oil VCVF discretization
|
|
* inspired by an oil reservoir.
|
|
*
|
|
* The domain is two-dimensional and exhibits a size of 6000m times 60m. Initially, the
|
|
* reservoir is assumed by oil with a bubble point pressure of 20 MPa, which also the
|
|
* initial pressure in the domain. No-flow boundaries are used for all boundaries. The
|
|
* permeability of the lower 10 m is reduced compared to the upper 10 m of the domain
|
|
* witch capillary pressure always being neglected. Three wells are approximated using
|
|
* constraints: Two water-injector wells, one at the lower-left boundary one at the
|
|
* lower-right boundary and one producer well in the upper part of the center of the
|
|
* domain. The pressure for the producer is assumed to be 2/3 of the reservoir pressure,
|
|
* the injector wells use a pressure which is 50% above the reservoir pressure.
|
|
*/
|
|
template <class TypeTag>
|
|
class ReservoirProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
// Grid and world dimension
|
|
enum { dim = GridView::dimension };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
// copy some indices for convenience
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
|
|
|
|
using InitialFluidState = Opm::CompositionalFluidState<Scalar,
|
|
FluidSystem,
|
|
/*enableEnthalpy=*/true>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
ReservoirProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
temperature_ = Parameters::get<TypeTag, Parameters::Temperature>();
|
|
maxDepth_ = Parameters::get<TypeTag, Parameters::MaxDepth>();
|
|
wellWidth_ = Parameters::get<TypeTag, Parameters::WellWidth>();
|
|
|
|
std::vector<std::pair<Scalar, Scalar> > Bo = {
|
|
{ 101353, 1.062 },
|
|
{ 1.82504e+06, 1.15 },
|
|
{ 3.54873e+06, 1.207 },
|
|
{ 6.99611e+06, 1.295 },
|
|
{ 1.38909e+07, 1.435 },
|
|
{ 1.73382e+07, 1.5 },
|
|
{ 2.07856e+07, 1.565 },
|
|
{ 2.76804e+07, 1.695 },
|
|
{ 3.45751e+07, 1.827 }
|
|
};
|
|
std::vector<std::pair<Scalar, Scalar> > muo = {
|
|
{ 101353, 0.00104 },
|
|
{ 1.82504e+06, 0.000975 },
|
|
{ 3.54873e+06, 0.00091 },
|
|
{ 6.99611e+06, 0.00083 },
|
|
{ 1.38909e+07, 0.000695 },
|
|
{ 1.73382e+07, 0.000641 },
|
|
{ 2.07856e+07, 0.000594 },
|
|
{ 2.76804e+07, 0.00051 },
|
|
{ 3.45751e+07, 0.000449 }
|
|
};
|
|
std::vector<std::pair<Scalar, Scalar> > Rs = {
|
|
{ 101353, 0.178108 },
|
|
{ 1.82504e+06, 16.1187 },
|
|
{ 3.54873e+06, 32.0594 },
|
|
{ 6.99611e+06, 66.0779 },
|
|
{ 1.38909e+07, 113.276 },
|
|
{ 1.73382e+07, 138.033 },
|
|
{ 2.07856e+07, 165.64 },
|
|
{ 2.76804e+07, 226.197 },
|
|
{ 3.45751e+07, 288.178 }
|
|
};
|
|
std::vector<std::pair<Scalar, Scalar> > Bg = {
|
|
{ 101353, 0.93576 },
|
|
{ 1.82504e+06, 0.0678972 },
|
|
{ 3.54873e+06, 0.0352259 },
|
|
{ 6.99611e+06, 0.0179498 },
|
|
{ 1.38909e+07, 0.00906194 },
|
|
{ 1.73382e+07, 0.00726527 },
|
|
{ 2.07856e+07, 0.00606375 },
|
|
{ 2.76804e+07, 0.00455343 },
|
|
{ 3.45751e+07, 0.00364386 },
|
|
{ 6.21542e+07, 0.00216723 }
|
|
};
|
|
std::vector<std::pair<Scalar, Scalar> > mug = {
|
|
{ 101353, 8e-06 },
|
|
{ 1.82504e+06, 9.6e-06 },
|
|
{ 3.54873e+06, 1.12e-05 },
|
|
{ 6.99611e+06, 1.4e-05 },
|
|
{ 1.38909e+07, 1.89e-05 },
|
|
{ 1.73382e+07, 2.08e-05 },
|
|
{ 2.07856e+07, 2.28e-05 },
|
|
{ 2.76804e+07, 2.68e-05 },
|
|
{ 3.45751e+07, 3.09e-05 },
|
|
{ 6.21542e+07, 4.7e-05 }
|
|
};
|
|
|
|
Scalar rhoRefO = 786.0; // [kg]
|
|
Scalar rhoRefG = 0.97; // [kg]
|
|
Scalar rhoRefW = 1037.0; // [kg]
|
|
FluidSystem::initBegin(/*numPvtRegions=*/1);
|
|
FluidSystem::setEnableDissolvedGas(true);
|
|
FluidSystem::setEnableVaporizedOil(false);
|
|
FluidSystem::setReferenceDensities(rhoRefO, rhoRefW, rhoRefG, /*regionIdx=*/0);
|
|
|
|
Opm::GasPvtMultiplexer<Scalar> *gasPvt = new Opm::GasPvtMultiplexer<Scalar>;
|
|
gasPvt->setApproach(GasPvtApproach::DryGas);
|
|
auto& dryGasPvt = gasPvt->template getRealPvt<GasPvtApproach::DryGas>();
|
|
dryGasPvt.setNumRegions(/*numPvtRegion=*/1);
|
|
dryGasPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
|
|
dryGasPvt.setGasFormationVolumeFactor(/*regionIdx=*/0, Bg);
|
|
dryGasPvt.setGasViscosity(/*regionIdx=*/0, mug);
|
|
|
|
Opm::OilPvtMultiplexer<Scalar> *oilPvt = new Opm::OilPvtMultiplexer<Scalar>;
|
|
oilPvt->setApproach(OilPvtApproach::LiveOil);
|
|
auto& liveOilPvt = oilPvt->template getRealPvt<OilPvtApproach::LiveOil>();
|
|
liveOilPvt.setNumRegions(/*numPvtRegion=*/1);
|
|
liveOilPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
|
|
liveOilPvt.setSaturatedOilGasDissolutionFactor(/*regionIdx=*/0, Rs);
|
|
liveOilPvt.setSaturatedOilFormationVolumeFactor(/*regionIdx=*/0, Bo);
|
|
liveOilPvt.setSaturatedOilViscosity(/*regionIdx=*/0, muo);
|
|
|
|
Opm::WaterPvtMultiplexer<Scalar> *waterPvt = new Opm::WaterPvtMultiplexer<Scalar>;
|
|
waterPvt->setApproach(WaterPvtApproach::ConstantCompressibilityWater);
|
|
auto& ccWaterPvt = waterPvt->template getRealPvt<WaterPvtApproach::ConstantCompressibilityWater>();
|
|
ccWaterPvt.setNumRegions(/*numPvtRegions=*/1);
|
|
ccWaterPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
|
|
ccWaterPvt.setViscosity(/*regionIdx=*/0, 9.6e-4);
|
|
ccWaterPvt.setCompressibility(/*regionIdx=*/0, 1.450377e-10);
|
|
|
|
gasPvt->initEnd();
|
|
oilPvt->initEnd();
|
|
waterPvt->initEnd();
|
|
|
|
using GasPvtSharedPtr = std::shared_ptr<Opm::GasPvtMultiplexer<Scalar> >;
|
|
FluidSystem::setGasPvt(GasPvtSharedPtr(gasPvt));
|
|
|
|
using OilPvtSharedPtr = std::shared_ptr<Opm::OilPvtMultiplexer<Scalar> >;
|
|
FluidSystem::setOilPvt(OilPvtSharedPtr(oilPvt));
|
|
|
|
using WaterPvtSharedPtr = std::shared_ptr<Opm::WaterPvtMultiplexer<Scalar> >;
|
|
FluidSystem::setWaterPvt(WaterPvtSharedPtr(waterPvt));
|
|
|
|
FluidSystem::initEnd();
|
|
|
|
pReservoir_ = 330e5;
|
|
layerBottom_ = 22.0;
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(1e-12);
|
|
coarseK_ = this->toDimMatrix_(1e-11);
|
|
|
|
// porosities
|
|
finePorosity_ = 0.2;
|
|
coarsePorosity_ = 0.3;
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fineMaterialParams_.setPcMinSat(phaseIdx, 0.0);
|
|
fineMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
|
|
|
|
coarseMaterialParams_.setPcMinSat(phaseIdx, 0.0);
|
|
coarseMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
|
|
}
|
|
|
|
// wrap up the initialization of the material law's parameters
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
materialParams_.resize(this->model().numGridDof());
|
|
ElementContext elemCtx(this->simulator());
|
|
auto eIt = this->simulator().gridView().template begin<0>();
|
|
const auto& eEndIt = this->simulator().gridView().template end<0>();
|
|
for (; eIt != eEndIt; ++eIt) {
|
|
elemCtx.updateStencil(*eIt);
|
|
size_t nDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
|
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
const GlobalPosition& pos = elemCtx.pos(dofIdx, /*timeIdx=*/0);
|
|
|
|
if (isFineMaterial_(pos))
|
|
materialParams_[globalDofIdx] = &fineMaterialParams_;
|
|
else
|
|
materialParams_[globalDofIdx] = &coarseMaterialParams_;
|
|
}
|
|
}
|
|
|
|
initFluidState_();
|
|
|
|
// start the first ("settle down") episode for 100 days
|
|
this->simulator().startNextEpisode(100.0*24*60*60);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::registerParam<TypeTag, Parameters::Temperature>
|
|
("The temperature [K] in the reservoir");
|
|
Parameters::registerParam<TypeTag, Parameters::MaxDepth>
|
|
("The maximum depth [m] of the reservoir");
|
|
Parameters::registerParam<TypeTag, Parameters::WellWidth>
|
|
("The width of producer/injector wells as a fraction of the width"
|
|
" of the spatial domain");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return std::string("reservoir_") + Model::name() + "_" + Model::discretizationName(); }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endEpisode
|
|
*/
|
|
void endEpisode()
|
|
{
|
|
// in the second episode, the actual work is done (the first is "settle down"
|
|
// episode). we need to use a pretty short initial time step here as the change
|
|
// in conditions is quite abrupt.
|
|
this->simulator().startNextEpisode(1e100);
|
|
this->simulator().setTimeStepSize(5.0);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*
|
|
* For this problem, a layer with high permability is located
|
|
* above one with low permeability.
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
unsigned globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
return *materialParams_[globalIdx];
|
|
}
|
|
|
|
const MaterialLawParams& materialLawParams(unsigned globalIdx) const
|
|
{ return *materialParams_[globalIdx]; }
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*
|
|
* The black-oil model assumes constant temperature to define its
|
|
* parameters. Although temperature is thus not really used by the
|
|
* model, it gets written to the VTK output. Who nows, maybe we
|
|
* will need it one day?
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return temperature_; }
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*
|
|
* The reservoir problem uses constraints to approximate
|
|
* extraction and production wells, so all boundaries are no-flow.
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{
|
|
// no flow on top and bottom
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*
|
|
* The reservoir problem uses a constant boundary condition for
|
|
* the whole domain.
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{
|
|
values.assignNaive(initialFluidState_);
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned pvIdx = 0; pvIdx < values.size(); ++ pvIdx)
|
|
assert(std::isfinite(values[pvIdx]));
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::constraints
|
|
*
|
|
* The reservoir problem places two water-injection wells on the lower-left and
|
|
* lower-right of the domain and a production well in the middle. The injection wells
|
|
* are fully water saturated with a higher pressure, the producer is fully oil
|
|
* saturated with a lower pressure than the remaining reservoir.
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints& constraintValues,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
if (this->simulator().episodeIndex() == 1)
|
|
return; // no constraints during the "settle down" episode
|
|
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isInjector_(pos)) {
|
|
constraintValues.setActive(true);
|
|
constraintValues.assignNaive(injectorFluidState_);
|
|
}
|
|
else if (isProducer_(pos)) {
|
|
constraintValues.setActive(true);
|
|
constraintValues.assignNaive(producerFluidState_);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0 everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
void initFluidState_()
|
|
{
|
|
auto& fs = initialFluidState_;
|
|
|
|
//////
|
|
// set temperatures
|
|
//////
|
|
fs.setTemperature(temperature_);
|
|
|
|
//////
|
|
// set saturations
|
|
//////
|
|
fs.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
|
|
fs.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
|
|
fs.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
|
|
|
|
//////
|
|
// set pressures
|
|
//////
|
|
Scalar pw = pReservoir_;
|
|
|
|
PhaseVector pC;
|
|
const auto& matParams = fineMaterialParams_;
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
|
|
fs.setPressure(oilPhaseIdx, pw + (pC[oilPhaseIdx] - pC[waterPhaseIdx]));
|
|
fs.setPressure(waterPhaseIdx, pw + (pC[waterPhaseIdx] - pC[waterPhaseIdx]));
|
|
fs.setPressure(gasPhaseIdx, pw + (pC[gasPhaseIdx] - pC[waterPhaseIdx]));
|
|
|
|
// reset all mole fractions to 0
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fs.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
|
|
//////
|
|
// set composition of the gas and water phases
|
|
//////
|
|
fs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
fs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
|
|
|
//////
|
|
// set composition of the oil phase
|
|
//////
|
|
Scalar RsSat =
|
|
FluidSystem::saturatedDissolutionFactor(fs, oilPhaseIdx, /*pvtRegionIdx=*/0);
|
|
Scalar XoGSat = FluidSystem::convertRsToXoG(RsSat, /*pvtRegionIdx=*/0);
|
|
Scalar xoGSat = FluidSystem::convertXoGToxoG(XoGSat, /*pvtRegionIdx=*/0);
|
|
Scalar xoG = 0.95*xoGSat;
|
|
Scalar xoO = 1.0 - xoG;
|
|
|
|
// finally set the oil-phase composition
|
|
fs.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
|
|
fs.setMoleFraction(oilPhaseIdx, oilCompIdx, xoO);
|
|
|
|
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
CFRP::solve(fs,
|
|
paramCache,
|
|
/*refPhaseIdx=*/oilPhaseIdx,
|
|
/*setViscosities=*/false,
|
|
/*setEnthalpies=*/false);
|
|
|
|
// set up the fluid state used for the injectors
|
|
auto& injFs = injectorFluidState_;
|
|
injFs = initialFluidState_;
|
|
|
|
Scalar pInj = pReservoir_ * 1.5;
|
|
injFs.setPressure(waterPhaseIdx, pInj);
|
|
injFs.setPressure(oilPhaseIdx, pInj);
|
|
injFs.setPressure(gasPhaseIdx, pInj);
|
|
injFs.setSaturation(waterPhaseIdx, 1.0);
|
|
injFs.setSaturation(oilPhaseIdx, 0.0);
|
|
injFs.setSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// set the composition of the phases to immiscible
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
injFs.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
|
|
injFs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
|
injFs.setMoleFraction(oilPhaseIdx, oilCompIdx, 1.0);
|
|
injFs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
|
|
CFRP::solve(injFs,
|
|
paramCache,
|
|
/*refPhaseIdx=*/waterPhaseIdx,
|
|
/*setViscosities=*/true,
|
|
/*setEnthalpies=*/false);
|
|
|
|
// set up the fluid state used for the producer
|
|
auto& prodFs = producerFluidState_;
|
|
prodFs = initialFluidState_;
|
|
|
|
Scalar pProd = pReservoir_ / 1.5;
|
|
prodFs.setPressure(waterPhaseIdx, pProd);
|
|
prodFs.setPressure(oilPhaseIdx, pProd);
|
|
prodFs.setPressure(gasPhaseIdx, pProd);
|
|
prodFs.setSaturation(waterPhaseIdx, 0.0);
|
|
prodFs.setSaturation(oilPhaseIdx, 1.0);
|
|
prodFs.setSaturation(gasPhaseIdx, 0.0);
|
|
|
|
CFRP::solve(prodFs,
|
|
paramCache,
|
|
/*refPhaseIdx=*/oilPhaseIdx,
|
|
/*setViscosities=*/true,
|
|
/*setEnthalpies=*/false);
|
|
}
|
|
|
|
bool isProducer_(const GlobalPosition& pos) const
|
|
{
|
|
Scalar x = pos[0] - this->boundingBoxMin()[0];
|
|
Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];
|
|
|
|
// only the upper half of the center section of the spatial domain is assumed to
|
|
// be the producer
|
|
if (y <= height/2.0)
|
|
return false;
|
|
|
|
return width/2.0 - width*1e-5 < x && x < width/2.0 + width*(wellWidth_ + 1e-5);
|
|
}
|
|
|
|
bool isInjector_(const GlobalPosition& pos) const
|
|
{
|
|
Scalar x = pos[0] - this->boundingBoxMin()[0];
|
|
Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];
|
|
|
|
// only the lower half of the leftmost and rightmost part of the spatial domain
|
|
// are assumed to be the water injectors
|
|
if (y > height/2.0)
|
|
return false;
|
|
|
|
return x < width*wellWidth_ - width*1e-5 || x > width*(1.0 - wellWidth_) + width*1e-5;
|
|
}
|
|
|
|
bool isFineMaterial_(const GlobalPosition& pos) const
|
|
{ return pos[dim - 1] > layerBottom_; }
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
Scalar layerBottom_;
|
|
Scalar pReservoir_;
|
|
|
|
Scalar finePorosity_;
|
|
Scalar coarsePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
std::vector<const MaterialLawParams*> materialParams_;
|
|
|
|
InitialFluidState initialFluidState_;
|
|
InitialFluidState injectorFluidState_;
|
|
InitialFluidState producerFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar maxDepth_;
|
|
Scalar wellWidth_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|