mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-04 13:36:57 -06:00
4ce61b7c7c
When this kw is active, BlackoilPropsAdFromDeck now modifies rvSat and rsSat curves cell-wise by a power of (sat_oil_cell / sat_oil_cell_historical_max). Currently, the associated jacobians do not reflect terms of type d/d_sat_oil, but code for doing this is given as comments to BlackoilPropsAdFromDeck::applyVap(ADB& r, ...).
372 lines
18 KiB
C++
372 lines
18 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|
|
#define OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
class BlackoilPropertiesInterface;
|
|
|
|
/// This class implements the AD-adapted fluid interface for
|
|
/// three-phase black-oil.
|
|
///
|
|
/// It is implemented by wrapping a BlackoilPropertiesInterface
|
|
/// object (the interface class defined in opm-core) and calling
|
|
/// its methods. This class does not implement rsMax() because the
|
|
/// required information is not available when wrapping a
|
|
/// BlackoilPropertiesInterface. Consequently, class
|
|
/// BlackoilPropsAd cannot be used to simulate problems involving
|
|
/// miscibility.
|
|
///
|
|
/// Most methods are available in two overloaded versions, one
|
|
/// taking a constant vector and returning the same, and one
|
|
/// taking an AD type and returning the same. Derivatives are not
|
|
/// returned separately by any method, only implicitly with the AD
|
|
/// version of the methods.
|
|
class BlackoilPropsAd : public BlackoilPropsAdInterface
|
|
{
|
|
public:
|
|
/// Constructor wrapping an opm-core black oil interface.
|
|
explicit BlackoilPropsAd(const BlackoilPropertiesInterface& props);
|
|
|
|
////////////////////////////
|
|
// Rock interface //
|
|
////////////////////////////
|
|
|
|
/// \return D, the number of spatial dimensions.
|
|
int numDimensions() const;
|
|
|
|
/// \return N, the number of cells.
|
|
int numCells() const;
|
|
|
|
/// \return Array of N porosity values.
|
|
const double* porosity() const;
|
|
|
|
/// \return Array of ND^2 permeability values.
|
|
/// The D^2 permeability values for a cell are organized as a matrix,
|
|
/// which is symmetric (so ordering does not matter).
|
|
const double* permeability() const;
|
|
|
|
|
|
////////////////////////////
|
|
// Fluid interface //
|
|
////////////////////////////
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef std::vector<int> Cells;
|
|
|
|
/// \return Number of active phases (also the number of components).
|
|
virtual int numPhases() const;
|
|
|
|
/// \return Object describing the active phases.
|
|
virtual PhaseUsage phaseUsage() const;
|
|
|
|
// ------ Canonical named indices for each phase ------
|
|
|
|
/// Canonical named indices for each phase.
|
|
enum PhaseIndex { Water = 0, Oil = 1, Gas = 2 };
|
|
|
|
|
|
// ------ Density ------
|
|
|
|
/// Densities of stock components at surface conditions.
|
|
/// \return Array of 3 density values.
|
|
const double* surfaceDensity(int regionIdx = 0) const;
|
|
|
|
|
|
// ------ Viscosity ------
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V muWat(const V& pw,
|
|
const Cells& cells) const;
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V muOil(const V& po,
|
|
const V& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V muGas(const V& pg,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V muGas(const V& pg,
|
|
const V& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muWat(const ADB& pw,
|
|
const Cells& cells) const;
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muOil(const ADB& po,
|
|
const ADB& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muGas(const ADB& pg,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muGas(const ADB& pg,
|
|
const ADB& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Formation volume factor (b) ------
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V bWat(const V& pw,
|
|
const Cells& cells) const;
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V bOil(const V& po,
|
|
const V& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V bGas(const V& pg,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V bGas(const V& pg,
|
|
const V& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bWat(const ADB& pw,
|
|
const Cells& cells) const;
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bOil(const ADB& po,
|
|
const ADB& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bGas(const ADB& pg,
|
|
const Cells& cells) const;
|
|
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bGas(const ADB& pg,
|
|
const ADB& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
// ------ Rs bubble point curve ------
|
|
|
|
/// Solution gas/oil ratio and its derivatives at saturated condition as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V rsSat(const V& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Solution gas/oil ratio and its derivatives at saturated condition as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V rsSat(const V& po,
|
|
const V& so,
|
|
const Cells& cells) const;
|
|
|
|
/// Solution gas/oil ratio and its derivatives at saturated condition as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB rsSat(const ADB& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Solution gas/oil ratio and its derivatives at saturated condition as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB rsSat(const ADB& po,
|
|
const ADB& so,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Rv condensation curve ------
|
|
|
|
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V rvSat(const V& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V rvSat(const V& po,
|
|
const V& so,
|
|
const Cells& cells) const;
|
|
|
|
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB rvSat(const ADB& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB rvSat(const ADB& po,
|
|
const ADB& so,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Relative permeability ------
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<V> relperm(const V& sw,
|
|
const V& so,
|
|
const V& sg,
|
|
const Cells& cells) const;
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<ADB> relperm(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const;
|
|
|
|
/// Capillary pressure for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n capillary pressure values,
|
|
/// containing the offsets for each p_g, p_o, p_w. The capillary pressure between
|
|
/// two arbitrary phases alpha and beta is then given as p_alpha - p_beta.
|
|
std::vector<ADB> capPress(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const;
|
|
|
|
/// Saturation update for hysteresis behavior.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
void updateSatHyst(const std::vector<double>& saturation,
|
|
const std::vector<int>& cells);
|
|
|
|
|
|
/// Update for max oil saturation.
|
|
void updateSatOilMax(const std::vector<double>& saturation);
|
|
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
PhaseUsage pu_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|