opm-simulators/ebos/eclproblem.hh
2024-01-24 10:40:40 +01:00

2849 lines
119 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2023 INRIA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <ebos/eclbaseaquifermodel.hh>
#include <ebos/eclcpgridvanguard.hh>
#include <ebos/ecldummygradientcalculator.hh>
#include <ebos/eclequilinitializer.hh>
#include <ebos/eclfluxmodule.hh>
#include <ebos/eclgenericproblem.hh>
#include <ebos/eclnewtonmethod.hh>
#include <ebos/ecloutputblackoilmodule.hh>
#include <ebos/eclproblem_properties.hh>
#include <ebos/eclthresholdpressure.hh>
#include <ebos/ecltransmissibility.hh>
#include <ebos/eclwriter.hh>
#if HAVE_DAMARIS
#include <ebos/damariswriter.hh>
#endif
#include <ebos/ecltracermodel.hh>
#include <ebos/FIBlackOilModel.hpp>
#include <ebos/vtkecltracermodule.hh>
#include <opm/common/utility/TimeService.hpp>
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Parser/ParserKeywords/E.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/material/common/ConditionalStorage.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/thermal/EclThermalLawManager.hpp>
#include <opm/models/common/directionalmobility.hh>
#include <opm/models/utils/pffgridvector.hh>
#include <opm/models/blackoil/blackoilmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/simulators/flow/EclActionHandler.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/utils/ParallelSerialization.hpp>
#include <opm/utility/CopyablePtr.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <algorithm>
#include <functional>
#include <set>
#include <string>
#include <vector>
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class EclProblem : public GetPropType<TypeTag, Properties::BaseProblem>
, public EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>
{
using BaseType = EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>;
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { enableExperiments = getPropValue<TypeTag, Properties::EnableExperiments>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
enum { enablePolymerMolarWeight = getPropValue<TypeTag, Properties::EnablePolymerMW>() };
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
enum { enableThermalFluxBoundaries = getPropValue<TypeTag, Properties::EnableThermalFluxBoundaries>() };
enum { enableApiTracking = getPropValue<TypeTag, Properties::EnableApiTracking>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using EclMaterialLawManager = typename GetProp<TypeTag, Properties::MaterialLaw>::EclMaterialLawManager;
using EclThermalLawManager = typename GetProp<TypeTag, Properties::SolidEnergyLaw>::EclThermalLawManager;
using MaterialLawParams = typename EclMaterialLawManager::MaterialLawParams;
using SolidEnergyLawParams = typename EclThermalLawManager::SolidEnergyLawParams;
using ThermalConductionLawParams = typename EclThermalLawManager::ThermalConductionLawParams;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using EclWellModel = GetPropType<TypeTag, Properties::EclWellModel>;
using EclAquiferModel = GetPropType<TypeTag, Properties::EclAquiferModel>;
using SolventModule = BlackOilSolventModule<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using ExtboModule = BlackOilExtboModule<TypeTag>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
using InitialFluidState = typename EclEquilInitializer<TypeTag>::ScalarFluidState;
using Toolbox = MathToolbox<Evaluation>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using EclWriterType = EclWriter<TypeTag>;
#if HAVE_DAMARIS
using DamarisWriterType = DamarisWriter<TypeTag>;
#endif
using TracerModel = EclTracerModel<TypeTag>;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
public:
using EclGenericProblem<GridView,FluidSystem,Scalar>::briefDescription;
using EclGenericProblem<GridView,FluidSystem,Scalar>::helpPreamble;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteOutput;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteRestartFile;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockCompressibility;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockReferencePressure;
using EclGenericProblem<GridView,FluidSystem,Scalar>::porosity;
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EclWriterType::registerParameters();
#if HAVE_DAMARIS
DamarisWriterType::registerParameters();
#endif
VtkEclTracerModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
"Write binary output which is compatible with the commercial "
"Eclipse simulator");
#if HAVE_DAMARIS
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableDamarisOutput,
"Write a specific variable using Damaris in a separate core");
#endif
EWOMS_REGISTER_PARAM(TypeTag, bool, EclOutputDoublePrecision,
"Tell the output writer to use double precision. Useful for 'perfect' restarts");
EWOMS_REGISTER_PARAM(TypeTag, unsigned, RestartWritingInterval,
"The frequencies of which time steps are serialized to disk");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableDriftCompensation,
"Enable partial compensation of systematic mass losses via the source term of the next time step");
if constexpr (enableExperiments)
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableAquifers,
"Enable analytic and numeric aquifer models");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableTuning,
"Honor some aspects of the TUNING keyword from the ECL deck.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, OutputMode,
"Specify which messages are going to be printed. Valid values are: none, log, all (default)");
EWOMS_REGISTER_PARAM(TypeTag, int, NumPressurePointsEquil,
"Number of pressure points (in each direction) in tables used for equilibration");
EWOMS_HIDE_PARAM(TypeTag, NumPressurePointsEquil); // Users will typically not need to modify this parameter..
EWOMS_REGISTER_PARAM(TypeTag, bool, ExplicitRockCompaction,
"Use pressure from end of the last time step when evaluating rock compaction");
EWOMS_HIDE_PARAM(TypeTag, ExplicitRockCompaction); // Users will typically not need to modify this parameter..
}
/*!
* \copydoc FvBaseProblem::handlePositionalParameter
*/
static int handlePositionalParameter(std::set<std::string>& seenParams,
std::string& errorMsg,
int,
const char** argv,
int paramIdx,
int)
{
using ParamsMeta = GetProp<TypeTag, Properties::ParameterMetaData>;
Dune::ParameterTree& tree = ParamsMeta::tree();
return eclPositionalParameter(tree,
seenParams,
errorMsg,
argv,
paramIdx);
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
EclProblem(Simulator& simulator)
: ParentType(simulator)
, EclGenericProblem<GridView,FluidSystem,Scalar>(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().gridView())
, transmissibilities_(simulator.vanguard().eclState(),
simulator.vanguard().gridView(),
simulator.vanguard().cartesianIndexMapper(),
simulator.vanguard().grid(),
simulator.vanguard().cellCentroids(),
enableEnergy,
enableDiffusion,
enableDispersion)
, thresholdPressures_(simulator)
, wellModel_(simulator)
, aquiferModel_(simulator)
, pffDofData_(simulator.gridView(), this->elementMapper())
, tracerModel_(simulator)
, actionHandler_(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().actionState(),
simulator.vanguard().summaryState(),
wellModel_,
simulator.vanguard().grid().comm())
{
this->model().addOutputModule(new VtkEclTracerModule<TypeTag>(simulator));
// Tell the black-oil extensions to initialize their internal data structures
const auto& vanguard = simulator.vanguard();
SolventModule::initFromState(vanguard.eclState(), vanguard.schedule());
PolymerModule::initFromState(vanguard.eclState());
FoamModule::initFromState(vanguard.eclState());
BrineModule::initFromState(vanguard.eclState());
ExtboModule::initFromState(vanguard.eclState());
MICPModule::initFromState(vanguard.eclState());
DispersionModule::initFromState(vanguard.eclState());
// create the ECL writer
eclWriter_ = std::make_unique<EclWriterType>(simulator);
#if HAVE_DAMARIS
// create Damaris writer
damarisWriter_ = std::make_unique<DamarisWriterType>(simulator);
enableDamarisOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableDamarisOutput) ;
#endif
enableDriftCompensation_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableDriftCompensation);
enableEclOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput);
if constexpr (enableExperiments)
enableAquifers_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableAquifers);
else
enableAquifers_ = true;
this->enableTuning_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableTuning);
this->initialTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
this->maxTimeStepAfterWellEvent_ = EWOMS_GET_PARAM(TypeTag, double, TimeStepAfterEventInDays)*24*60*60;
// The value N for this parameter is defined in the following order of presedence:
// 1. Command line value (--num-pressure-points-equil=N)
// 2. EQLDIMS item 2
// Default value is defined in opm-common/src/opm/input/eclipse/share/keywords/000_Eclipse100/E/EQLDIMS
if (EWOMS_PARAM_IS_SET(TypeTag, int, NumPressurePointsEquil))
{
this->numPressurePointsEquil_ = EWOMS_GET_PARAM(TypeTag, int, NumPressurePointsEquil);
} else {
this->numPressurePointsEquil_ = simulator.vanguard().eclState().getTableManager().getEqldims().getNumDepthNodesP();
}
RelpermDiagnostics relpermDiagnostics;
relpermDiagnostics.diagnosis(vanguard.eclState(), vanguard.cartesianIndexMapper());
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
const auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
// Set the start time of the simulation
simulator.setStartTime(schedule.getStartTime());
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented by endEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
// disables gravity, else the standard value of the gravity constant at sea level
// on earth is used
this->gravity_ = 0.0;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_[dim - 1] = 9.80665;
if (!eclState.getInitConfig().hasGravity())
this->gravity_[dim - 1] = 0.0;
if (this->enableTuning_) {
// if support for the TUNING keyword is enabled, we get the initial time
// steping parameters from it instead of from command line parameters
const auto& tuning = schedule[0].tuning();
this->initialTimeStepSize_ = tuning.TSINIT.has_value() ? tuning.TSINIT.value() : -1.0;
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
}
this->initFluidSystem_();
// deal with DRSDT
this->mixControls_.init(this->model().numGridDof(),
this->episodeIndex(),
eclState.runspec().tabdims().getNumPVTTables());
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
this->maxOilSaturation_.resize(this->model().numGridDof(), 0.0);
}
this->readRockParameters_(simulator.vanguard().cellCenterDepths(),
[&simulator](const unsigned idx)
{
std::array<int,dim> coords;
simulator.vanguard().cartesianCoordinate(idx, coords);
for (auto& c : coords) {
++c;
}
return coords;
});
readMaterialParameters_();
readThermalParameters_();
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
transmissibilities_.finishInit(gridToEquilGrid);
const auto& initconfig = eclState.getInitConfig();
tracerModel_.init(initconfig.restartRequested());
if (initconfig.restartRequested())
readEclRestartSolution_();
else
readInitialCondition_();
tracerModel_.prepareTracerBatches();
updatePffDofData_();
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
int numElements = gridView.size(/*codim=*/0);
this->polymer_.maxAdsorption.resize(numElements, 0.0);
}
readBoundaryConditions_();
// compute and set eq weights based on initial b values
computeAndSetEqWeights_();
if (enableDriftCompensation_) {
drift_.resize(this->model().numGridDof());
drift_ = 0.0;
}
// write the static output files (EGRID, INIT, SMSPEC, etc.)
if (enableEclOutput_) {
if (simulator.vanguard().grid().comm().size() > 1) {
if (simulator.vanguard().grid().comm().rank() == 0)
eclWriter_->setTransmissibilities(&simulator.vanguard().globalTransmissibility());
} else
eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities());
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
eclWriter_->writeInit(equilGridToGrid);
}
simulator.vanguard().releaseGlobalTransmissibilities();
// after finishing the initialization and writing the initial solution, we move
// to the first "real" episode/report step
// for restart the episode index and start is already set
if (!initconfig.restartRequested()) {
simulator.startNextEpisode(schedule.seconds(1));
simulator.setEpisodeIndex(0);
}
}
void prefetch(const Element& elem) const
{ pffDofData_.prefetch(elem); }
/*!
* \brief This method restores the complete state of the problem and its sub-objects
* from disk.
*
* The serialization format used by this method is ad-hoc. It is the inverse of the
* serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
// reload the current episode/report step from the deck
beginEpisode();
// deserialize the wells
wellModel_.deserialize(res);
if (enableAquifers_)
// deserialize the aquifer
aquiferModel_.deserialize(res);
}
/*!
* \brief This method writes the complete state of the problem and its subobjects to
* disk.
*
* The file format used here is ad-hoc.
*/
template <class Restarter>
void serialize(Restarter& res)
{
wellModel_.serialize(res);
if (enableAquifers_)
aquiferModel_.serialize(res);
}
int episodeIndex() const
{
return std::max(this->simulator().episodeIndex(), 0);
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode()
{
OPM_TIMEBLOCK(beginEpisode);
// Proceed to the next report step
auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
const auto& events = schedule[episodeIdx].events();
if (episodeIdx >= 0 && events.hasEvent(ScheduleEvents::GEO_MODIFIER)) {
// bring the contents of the keywords to the current state of the SCHEDULE
// section.
//
// TODO (?): make grid topology changes possible (depending on what exactly
// has changed, the grid may need be re-created which has some serious
// implications on e.g., the solution of the simulation.)
const auto& miniDeck = schedule[episodeIdx].geo_keywords();
const auto& cc = simulator.vanguard().grid().comm();
eclState.apply_schedule_keywords( miniDeck );
eclBroadcast(cc, eclState.getTransMult() );
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
// re-compute all quantities which may possibly be affected.
transmissibilities_.update(true, equilGridToGrid);
this->referencePorosity_[1] = this->referencePorosity_[0];
updateReferencePorosity_();
updatePffDofData_();
this->model().linearizer().updateDiscretizationParameters();
}
bool tuningEvent = this->beginEpisode_(enableExperiments, this->episodeIndex());
// set up the wells for the next episode.
wellModel_.beginEpisode();
// set up the aquifers for the next episode.
if (enableAquifers_)
// set up the aquifers for the next episode.
aquiferModel_.beginEpisode();
// set the size of the initial time step of the episode
Scalar dt = limitNextTimeStepSize_(simulator.episodeLength());
// negative value of initialTimeStepSize_ indicates no active limit from TSINIT or NEXTSTEP
if ( (episodeIdx == 0 || tuningEvent) && this->initialTimeStepSize_ > 0)
// allow the size of the initial time step to be set via an external parameter
// if TUNING is enabled, also limit the time step size after a tuning event to TSINIT
dt = std::min(dt, this->initialTimeStepSize_);
simulator.setTimeStepSize(dt);
// Evaluate UDQ assign statements to make sure the settings are
// available as UDA controls for the current report step.
actionHandler_.evalUDQAssignments(episodeIdx, simulator.vanguard().udqState());
if (episodeIdx >= 0) {
const auto& oilVap = schedule[episodeIdx].oilvap();
if (oilVap.getType() == OilVaporizationProperties::OilVaporization::VAPPARS) {
FluidSystem::setVapPars(oilVap.vap1(), oilVap.vap2());
} else {
FluidSystem::setVapPars(0.0, 0.0);
}
}
}
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{
OPM_TIMEBLOCK(beginTimeStep);
int episodeIdx = this->episodeIndex();
this->beginTimeStep_(enableExperiments,
episodeIdx,
this->simulator().timeStepIndex(),
this->simulator().startTime(),
this->simulator().time(),
this->simulator().timeStepSize(),
this->simulator().endTime());
// update maximum water saturation and minimum pressure
// used when ROCKCOMP is activated
asImp_().updateExplicitQuantities_();
if (nonTrivialBoundaryConditions()) {
this->model().linearizer().updateBoundaryConditionData();
}
wellModel_.beginTimeStep();
if (enableAquifers_)
aquiferModel_.beginTimeStep();
tracerModel_.beginTimeStep();
}
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{
OPM_TIMEBLOCK(beginIteration);
wellModel_.beginIteration();
if (enableAquifers_)
aquiferModel_.beginIteration();
}
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{
OPM_TIMEBLOCK(endIteration);
wellModel_.endIteration();
if (enableAquifers_)
aquiferModel_.endIteration();
}
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
OPM_TIMEBLOCK(endTimeStep);
#ifndef NDEBUG
if constexpr (getPropValue<TypeTag, Properties::EnableDebuggingChecks>()) {
// in debug mode, we don't care about performance, so we check if the model does
// the right thing (i.e., the mass change inside the whole reservoir must be
// equivalent to the fluxes over the grid's boundaries plus the source rates
// specified by the problem)
int rank = this->simulator().gridView().comm().rank();
if (rank == 0)
std::cout << "checking conservativeness of solution\n";
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
if (rank == 0)
std::cout << "solution is sufficiently conservative\n";
}
#endif // NDEBUG
auto& simulator = this->simulator();
wellModel_.endTimeStep();
if (enableAquifers_)
aquiferModel_.endTimeStep();
tracerModel_.endTimeStep();
// Compute flux for output
this->model().linearizer().updateFlowsInfo();
// deal with DRSDT and DRVDT
asImp_().updateCompositionChangeLimits_();
{
OPM_TIMEBLOCK(driftCompansation);
if (enableDriftCompensation_) {
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
drift_[globalDofIdx] = residual[globalDofIdx];
drift_[globalDofIdx] *= simulator.timeStepSize();
if constexpr (getPropValue<TypeTag, Properties::UseVolumetricResidual>())
drift_[globalDofIdx] *= this->model().dofTotalVolume(globalDofIdx);
}
}
}
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
eclWriter_->evalSummaryState(isSubStep);
int episodeIdx = this->episodeIndex();
// Re-ordering in case of Alugrid
std::function<unsigned int(unsigned int)> gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
std::function<void(bool)> transUp =
[this,gridToEquilGrid](bool global) {
this->transmissibilities_.update(global,gridToEquilGrid);
};
{
OPM_TIMEBLOCK(applyActions);
actionHandler_.applyActions(episodeIdx,
simulator.time() + simulator.timeStepSize(),
transUp);
}
// deal with "clogging" for the MICP model
if constexpr (enableMICP){
auto& model = this->model();
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
auto& phi = this->referencePorosity_[/*timeIdx=*/1][globalDofIdx];
MICPModule::checkCloggingMICP(model, phi, globalDofIdx);
}
}
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
OPM_TIMEBLOCK(endEpisode);
auto& simulator = this->simulator();
auto& schedule = simulator.vanguard().schedule();
wellModel_.endEpisode();
if (enableAquifers_)
aquiferModel_.endEpisode();
int episodeIdx = this->episodeIndex();
// check if we're finished ...
if (episodeIdx + 1 >= static_cast<int>(schedule.size() - 1)) {
simulator.setFinished(true);
return;
}
// .. if we're not yet done, start the next episode (report step)
simulator.startNextEpisode(schedule.stepLength(episodeIdx + 1));
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(const SimulatorTimer& timer, bool verbose = true)
{
OPM_TIMEBLOCK(problemWriteOutput);
// use the generic code to prepare the output fields and to
// write the desired VTK files.
if (EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) || this->simulator().episodeWillBeOver()){
ParentType::writeOutput(verbose);
}
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
data::Solution localCellData = {};
#if HAVE_DAMARIS
// N.B. the Damaris output has to be done before the ECL output as the ECL one
// does all kinds of std::move() relocation of data
if (enableDamarisOutput_) {
damarisWriter_->writeOutput(localCellData, isSubStep) ;
}
#endif
if (enableEclOutput_){
eclWriter_->writeOutput(std::move(localCellData), timer, isSubStep);
}
}
void finalizeOutput() {
OPM_TIMEBLOCK(finalizeOutput);
// this will write all pending output to disk
// to avoid corruption of output files
eclWriter_.reset();
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return transmissibilities_.permeability(globalSpaceIdx);
}
/*!
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
const DimMatrix& intrinsicPermeability(unsigned globalElemIdx) const
{ return transmissibilities_.permeability(globalElemIdx); }
/*!
* \copydoc EclTransmissiblity::transmissibility
*/
template <class Context>
Scalar transmissibility(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return pffDofData_.get(context.element(), toDofLocalIdx).transmissibility;
}
/*!
* \brief Direct access to the transmissibility between two elements.
*/
Scalar transmissibility(unsigned globalCenterElemIdx, unsigned globalElemIdx) const
{
return transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
}
/*!
* \copydoc EclTransmissiblity::diffusivity
*/
template <class Context>
Scalar diffusivity(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return *pffDofData_.get(context.element(), toDofLocalIdx).diffusivity;
}
/*!
* give the transmissibility for a face i.e. pair. should be symmetric?
*/
Scalar diffusivity(const unsigned globalCellIn, const unsigned globalCellOut) const{
return transmissibilities_.diffusivity(globalCellIn, globalCellOut);
}
/*!
* give the dispersivity for a face i.e. pair.
*/
Scalar dispersivity(const unsigned globalCellIn, const unsigned globalCellOut) const{
return transmissibilities_.dispersivity(globalCellIn, globalCellOut);
}
/*!
* \brief Direct access to a boundary transmissibility.
*/
Scalar thermalTransmissibilityBoundary(const unsigned globalSpaceIdx,
const unsigned boundaryFaceIdx) const
{
return transmissibilities_.thermalTransmissibilityBoundary(globalSpaceIdx, boundaryFaceIdx);
}
/*!
* \copydoc EclTransmissiblity::transmissibilityBoundary
*/
template <class Context>
Scalar transmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.transmissibilityBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Direct access to a boundary transmissibility.
*/
Scalar transmissibilityBoundary(const unsigned globalSpaceIdx,
const unsigned boundaryFaceIdx) const
{
return transmissibilities_.transmissibilityBoundary(globalSpaceIdx, boundaryFaceIdx);
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
Scalar thermalHalfTransmissibility(const unsigned globalSpaceIdxIn,
const unsigned globalSpaceIdxOut) const
{
return transmissibilities_.thermalHalfTrans(globalSpaceIdxIn,globalSpaceIdxOut);
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityIn(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransIn;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityOut(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransOut;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.thermalHalfTransBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Return a reference to the object that handles the "raw" transmissibilities.
*/
const typename Vanguard::TransmissibilityType& eclTransmissibilities() const
{ return transmissibilities_; }
/*!
* \copydoc BlackOilBaseProblem::thresholdPressure
*/
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const EclThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
EclThresholdPressure<TypeTag>& thresholdPressure()
{ return thresholdPressures_; }
const EclTracerModel<TypeTag>& tracerModel() const
{ return tracerModel_; }
EclTracerModel<TypeTag>& tracerModel()
{ return tracerModel_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* For the EclProblem, this method is identical to referencePorosity(). The intensive
* quantities object may apply various multipliers (e.g. ones which model rock
* compressibility and water induced rock compaction) to it which depend on the
* current physical conditions.
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->porosity(globalSpaceIdx, timeIdx);
}
/*!
* \brief Returns the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
template <class Context>
Scalar dofCenterDepth(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->dofCenterDepth(globalSpaceIdx);
}
/*!
* \brief Direct indexed acces to the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
Scalar dofCenterDepth(unsigned globalSpaceIdx) const
{
return this->simulator().vanguard().cellCenterDepth(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockCompressibility
*/
template <class Context>
Scalar rockCompressibility(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockCompressibility(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockReferencePressure
*/
template <class Context>
Scalar rockReferencePressure(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockReferencePressure(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->materialLawParams(globalSpaceIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx) const
{
return materialLawManager_->materialLawParams(globalDofIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx, FaceDir::DirEnum facedir) const
{
return materialLawManager_->materialLawParams(globalDofIdx, facedir);
}
/*!
* \brief Return the parameters for the energy storage law of the rock
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionLawParams(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->thermalConductionLawParams(globalSpaceIdx);
}
/*!
* \brief Returns the ECL material law manager
*
* Note that this method is *not* part of the generic eWoms problem API because it
* would force all problens use the ECL material laws.
*/
std::shared_ptr<const EclMaterialLawManager> materialLawManager() const
{ return materialLawManager_; }
template <class FluidState>
void updateRelperms(
std::array<Evaluation,numPhases> &mobility,
DirectionalMobilityPtr &dirMob,
FluidState &fluidState,
unsigned globalSpaceIdx) const
{
OPM_TIMEBLOCK_LOCAL(updateRelperms);
{
// calculate relative permeabilities. note that we store the result into the
// mobility_ class attribute. the division by the phase viscosity happens later.
const auto& materialParams = materialLawParams(globalSpaceIdx);
MaterialLaw::relativePermeabilities(mobility, materialParams, fluidState);
Valgrind::CheckDefined(mobility);
}
if (materialLawManager_->hasDirectionalRelperms()
|| materialLawManager_->hasDirectionalImbnum())
{
using Dir = FaceDir::DirEnum;
constexpr int ndim = 3;
dirMob = std::make_unique<DirectionalMobility<TypeTag, Evaluation>>();
Dir facedirs[ndim] = {Dir::XPlus, Dir::YPlus, Dir::ZPlus};
for (int i = 0; i<ndim; i++) {
const auto& materialParams = materialLawParams(globalSpaceIdx, facedirs[i]);
auto& mob_array = dirMob->getArray(i);
MaterialLaw::relativePermeabilities(mob_array, materialParams, fluidState);
}
}
}
/*!
* \copydoc materialLawManager()
*/
std::shared_ptr<EclMaterialLawManager> materialLawManager()
{ return materialLawManager_; }
using EclGenericProblem<GridView,FluidSystem,Scalar>::pvtRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned pvtRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return pvtRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::satnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned satnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->satnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::miscnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned miscnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->miscnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::plmixnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned plmixnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->plmixnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxPolymerAdsorption;
/*!
* \brief Returns the max polymer adsorption value
*/
template <class Context>
Scalar maxPolymerAdsorption(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->maxPolymerAdsorption(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().vanguard().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// use the initial temperature of the DOF if temperature is not a primary
// variable
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
}
Scalar temperature(unsigned globalDofIdx, unsigned /*timeIdx*/) const
{
// use the initial temperature of the DOF if temperature is not a primary
// variable
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
}
const SolidEnergyLawParams&
solidEnergyLawParams(unsigned globalSpaceIdx,
unsigned /*timeIdx*/) const
{
return this->thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
const ThermalConductionLawParams &
thermalConductionLawParams(unsigned globalSpaceIdx,
unsigned /*timeIdx*/)const
{
return this->thermalLawManager_->thermalConductionLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseProblem::boundary
*
* Reservoir simulation uses no-flow conditions as default for all boundaries.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
OPM_TIMEBLOCK_LOCAL(eclProblemBoundary);
if (!context.intersection(spaceIdx).boundary())
return;
if constexpr (!enableEnergy || !enableThermalFluxBoundaries)
values.setNoFlow();
else {
// in the energy case we need to specify a non-trivial boundary condition
// because the geothermal gradient needs to be maintained. for this, we
// simply assume the initial temperature at the boundary and specify the
// thermal flow accordingly. in this context, "thermal flow" means energy
// flow due to a temerature gradient while assuming no-flow for mass
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
values.setThermalFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
}
if (nonTrivialBoundaryConditions()) {
unsigned indexInInside = context.intersection(spaceIdx).indexInInside();
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
unsigned pvtRegionIdx = pvtRegionIndex(context, spaceIdx, timeIdx);
const auto [type, massrate] = boundaryCondition(globalDofIdx, indexInInside);
if (type == BCType::THERMAL)
values.setThermalFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
else if (type == BCType::FREE || type == BCType::DIRICHLET)
values.setFreeFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
else if (type == BCType::RATE)
values.setMassRate(massrate, pvtRegionIdx);
}
}
/*!
* \brief Returns an element's historic maximum oil phase saturation that was
* observed during the simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This is a bit of a hack from the conceptional point of view, but it is required to
* match the results of the 'flow' and ECLIPSE 100 simulators.
*/
Scalar maxOilSaturation(unsigned globalDofIdx) const
{
if (!this->vapparsActive(this->episodeIndex()))
return 0.0;
return this->maxOilSaturation_[globalDofIdx];
}
/*!
* \brief Sets an element's maximum oil phase saturation observed during the
* simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This a hack on top of the maxOilSaturation() hack but it is currently required to
* do restart externally. i.e. from the flow code.
*/
void setMaxOilSaturation(unsigned globalDofIdx, Scalar value)
{
if (!this->vapparsActive(this->episodeIndex()))
return;
this->maxOilSaturation_[globalDofIdx] = value;
}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*/
Scalar maxGasDissolutionFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
return this->mixControls_.maxGasDissolutionFactor(timeIdx, globalDofIdx,
this->episodeIndex(),
this->pvtRegionIndex(globalDofIdx));
}
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*/
Scalar maxOilVaporizationFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
return this->mixControls_.maxOilVaporizationFactor(timeIdx, globalDofIdx,
this->episodeIndex(),
this->pvtRegionIndex(globalDofIdx));
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* For quite technical reasons, the storage term cannot be recycled if either DRSDT
* or DRVDT are active in ebos. Nor if the porosity is changes between timesteps
* using a pore volume multiplier (i.e., poreVolumeMultiplier() != 1.0)
*/
bool recycleFirstIterationStorage() const
{
int episodeIdx = this->episodeIndex();
return !this->mixControls_.drsdtActive(episodeIdx) &&
!this->mixControls_.drvdtActive(episodeIdx) &&
this->rockCompPoroMultWc_.empty() &&
this->rockCompPoroMult_.empty();
}
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
values.assignNaive(initialFluidStates_[globalDofIdx]);
SolventModule::assignPrimaryVars(values,
enableSolvent ? this->solventSaturation_[globalDofIdx] : 0.0,
enableSolvent ? this->solventRsw_[globalDofIdx] : 0.0);
if constexpr (enablePolymer)
values[Indices::polymerConcentrationIdx] = this->polymer_.concentration[globalDofIdx];
if constexpr (enablePolymerMolarWeight)
values[Indices::polymerMoleWeightIdx]= this->polymer_.moleWeight[globalDofIdx];
if constexpr (enableBrine) {
if (enableSaltPrecipitation && values.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltSaturation();
}
else {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltConcentration();
}
}
if constexpr (enableMICP){
values[Indices::microbialConcentrationIdx] = this->micp_.microbialConcentration[globalDofIdx];
values[Indices::oxygenConcentrationIdx]= this->micp_.oxygenConcentration[globalDofIdx];
values[Indices::ureaConcentrationIdx]= this->micp_.ureaConcentration[globalDofIdx];
values[Indices::calciteConcentrationIdx]= this->micp_.calciteConcentration[globalDofIdx];
values[Indices::biofilmConcentrationIdx]= this->micp_.biofilmConcentration[globalDofIdx];
}
values.checkDefined();
}
/*!
* \copydoc FvBaseProblem::initialSolutionApplied()
*/
void initialSolutionApplied()
{
// Calculate all intensive quantities.
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx*/0);
// We also need the intensive quantities for timeIdx == 1
// corresponding to the start of the current timestep, if we
// do not use the storage cache, or if we cannot recycle the
// first iteration storage.
if (!this->model().enableStorageCache() || !this->recycleFirstIterationStorage()) {
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx*/1);
}
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities and the after applying the initial solution because
// the well model uses these...
wellModel_.init();
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
// the initial solution.
thresholdPressures_.finishInit();
updateCompositionChangeLimits_();
if (enableAquifers_)
aquiferModel_.initialSolutionApplied();
if (this->simulator().episodeIndex() == 0) {
eclWriter_->writeInitialFIPReport();
}
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
source(rate, globalDofIdx, timeIdx);
}
void source(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const
{
OPM_TIMEBLOCK_LOCAL(eclProblemSource);
rate = 0.0;
// Add well contribution to source here.
wellModel_.computeTotalRatesForDof(rate, globalDofIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
rate[eqIdx] /= this->model().dofTotalVolume(globalDofIdx);
Valgrind::CheckDefined(rate[eqIdx]);
assert(isfinite(rate[eqIdx]));
}
// Add non-well sources.
addToSourceDense(rate, globalDofIdx, timeIdx);
}
void addToSourceDense(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const
{
if (enableAquifers_)
aquiferModel_.addToSource(rate, globalDofIdx, timeIdx);
// Add source term from deck
const auto& source = this->simulator().vanguard().schedule()[this->episodeIndex()].source();
std::array<int,3> ijk;
this->simulator().vanguard().cartesianCoordinate(globalDofIdx, ijk);
if (source.hasSource(ijk)) {
const int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
static std::array<SourceComponent, 3> sc_map = {SourceComponent::WATER, SourceComponent::OIL, SourceComponent::GAS};
static std::array<int, 3> phidx_map = {FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx};
static std::array<int, 3> cidx_map = {waterCompIdx, oilCompIdx, gasCompIdx};
for (unsigned i = 0; i < phidx_map.size(); ++i) {
const auto phaseIdx = phidx_map[i];
const auto sourceComp = sc_map[i];
const auto compIdx = cidx_map[i];
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
Scalar mass_rate = source.rate({ijk, sourceComp}) / this->model().dofTotalVolume(globalDofIdx);
if constexpr (getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>()) {
mass_rate /= FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
}
rate[Indices::canonicalToActiveComponentIndex(compIdx)] += mass_rate;
}
if constexpr (enableSolvent) {
Scalar mass_rate = source.rate({ijk, SourceComponent::SOLVENT}) / this->model().dofTotalVolume(globalDofIdx);
if constexpr (getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>()) {
const auto& solventPvt = SolventModule::solventPvt();
mass_rate /= solventPvt.referenceDensity(pvtRegionIdx);
}
rate[Indices::contiSolventEqIdx] += mass_rate;
}
if constexpr (enablePolymer) {
rate[Indices::polymerConcentrationIdx] += source.rate({ijk, SourceComponent::POLYMER}) / this->model().dofTotalVolume(globalDofIdx);
}
if constexpr (enableEnergy) {
for (unsigned i = 0; i < phidx_map.size(); ++i) {
const auto phaseIdx = phidx_map[i];
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const auto sourceComp = sc_map[i];
if (source.hasHrate({ijk, sourceComp})) {
rate[Indices::contiEnergyEqIdx] += source.hrate({ijk, sourceComp}) / this->model().dofTotalVolume(globalDofIdx);
} else {
const auto& intQuants = this->simulator().model().intensiveQuantities(globalDofIdx, /*timeIdx*/ 0);
auto fs = intQuants.fluidState();
// if temperature is not set, use cell temperature as default
if (source.hasTemperature({ijk, sourceComp})) {
Scalar temperature = source.temperature({ijk, sourceComp});
fs.setTemperature(temperature);
}
const auto& h = FluidSystem::enthalpy(fs, phaseIdx, pvtRegionIdx);
Scalar mass_rate = source.rate({ijk, sourceComp})/ this->model().dofTotalVolume(globalDofIdx);
Scalar energy_rate = getValue(h)*mass_rate;
rate[Indices::contiEnergyEqIdx] += energy_rate;
}
}
}
}
// if requested, compensate systematic mass loss for cells which were "well
// behaved" in the last time step
// Note that we don't allow for drift compensation if there are no active wells.
const bool compensateDrift = wellModel_.wellsActive();
if (enableDriftCompensation_ && compensateDrift) {
const auto& simulator = this->simulator();
const auto& model = this->model();
// we use a lower tolerance for the compensation too
// assure the added drift from the last step does not
// cause convergence issues on the current step
Scalar maxCompensation = model.newtonMethod().tolerance()/10;
Scalar poro = this->porosity(globalDofIdx, timeIdx);
Scalar dt = simulator.timeStepSize();
EqVector dofDriftRate = drift_[globalDofIdx];
dofDriftRate /= dt*model.dofTotalVolume(globalDofIdx);
// restrict drift compensation to the CNV tolerance
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
Scalar cnv = std::abs(dofDriftRate[eqIdx])*dt*model.eqWeight(globalDofIdx, eqIdx)/poro;
if (cnv > maxCompensation) {
dofDriftRate[eqIdx] *= maxCompensation/cnv;
}
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] -= dofDriftRate[eqIdx];
}
}
/*!
* \brief Returns a reference to the ECL well manager used by the problem.
*
* This can be used for inspecting wells outside of the problem.
*/
const EclWellModel& wellModel() const
{ return wellModel_; }
EclWellModel& wellModel()
{ return wellModel_; }
const EclAquiferModel& aquiferModel() const
{ return aquiferModel_; }
EclAquiferModel& mutableAquiferModel()
{ return aquiferModel_; }
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
{ return initialFluidStates_[globalDofIdx]; }
const EclipseIO& eclIO() const
{ return eclWriter_->eclIO(); }
void setSubStepReport(const SimulatorReportSingle& report)
{ return eclWriter_->setSubStepReport(report); }
void setSimulationReport(const SimulatorReport& report)
{ return eclWriter_->setSimulationReport(report); }
bool nonTrivialBoundaryConditions() const
{ return nonTrivialBoundaryConditions_; }
const InitialFluidState boundaryFluidState(unsigned globalDofIdx, const int directionId) const
{
OPM_TIMEBLOCK_LOCAL(boundaryFluidState);
const auto& bcprop = this->simulator().vanguard().schedule()[this->episodeIndex()].bcprop;
if (bcprop.size() > 0) {
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
// index == 0: no boundary conditions for this
// global cell and direction
if (bcindex_(dir)[globalDofIdx] == 0)
return initialFluidStates_[globalDofIdx];
const auto& bc = bcprop[bcindex_(dir)[globalDofIdx]];
if (bc.bctype == BCType::DIRICHLET )
{
InitialFluidState fluidState;
const int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
fluidState.setPvtRegionIndex(pvtRegionIdx);
switch (bc.component) {
case BCComponent::OIL:
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
throw std::logic_error("oil is not active and you're trying to add oil BC");
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
break;
case BCComponent::GAS:
if (!FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
throw std::logic_error("gas is not active and you're trying to add gas BC");
fluidState.setSaturation(FluidSystem::gasPhaseIdx, 1.0);
break;
case BCComponent::WATER:
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
throw std::logic_error("water is not active and you're trying to add water BC");
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 1.0);
break;
case BCComponent::SOLVENT:
case BCComponent::POLYMER:
case BCComponent::NONE:
throw std::logic_error("you need to specify a valid component (OIL, WATER or GAS) when DIRICHLET type is set in BC");
break;
}
double pressure = initialFluidStates_[globalDofIdx].pressure(refPressurePhaseIdx_());
const auto pressure_input = bc.pressure;
if (pressure_input) {
pressure = *pressure_input;
}
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(globalDofIdx);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
fluidState.setPressure(phaseIdx, pressure);
}
double temperature = initialFluidStates_[globalDofIdx].temperature(0); // we only have one temperature
const auto temperature_input = bc.temperature;
if(temperature_input)
temperature = *temperature_input;
fluidState.setTemperature(temperature);
if (FluidSystem::enableDissolvedGas()) {
fluidState.setRs(0.0);
fluidState.setRv(0.0);
}
if (FluidSystem::enableDissolvedGasInWater()) {
fluidState.setRsw(0.0);
}
if (FluidSystem::enableVaporizedWater())
fluidState.setRvw(0.0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setDensity(phaseIdx, rho);
if (enableEnergy) {
const auto& h = FluidSystem::enthalpy(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setEnthalpy(phaseIdx, h);
}
}
fluidState.checkDefined();
return fluidState;
}
}
return initialFluidStates_[globalDofIdx];
}
/*!
* \brief Propose the size of the next time step to the simulator.
*
* This method is only called if the Newton solver does converge, the simulator
* automatically cuts the time step in half without consultating this method again.
*/
Scalar nextTimeStepSize() const
{
OPM_TIMEBLOCK(nexTimeStepSize);
// allow external code to do the timestepping
if (this->nextTimeStepSize_ > 0.0)
return this->nextTimeStepSize_;
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// for the initial episode, we use a fixed time step size
if (episodeIdx < 0)
return this->initialTimeStepSize_;
// ask the newton method for a suggestion. This suggestion will be based on how
// well the previous time step converged. After that, apply the runtime time
// stepping constraints.
const auto& newtonMethod = this->model().newtonMethod();
return limitNextTimeStepSize_(newtonMethod.suggestTimeStepSize(simulator.timeStepSize()));
}
/*!
* \brief Calculate the porosity multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompPoroMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
OPM_TIMEBLOCK_LOCAL(rockCompPoroMultiplier);
if (this->rockCompPoroMult_.empty() && this->rockCompPoroMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectivePressure = decay<LhsEval>(fs.pressure(refPressurePhaseIdx_()));
if (!this->minRefPressure_.empty())
// The pore space change is irreversible
effectivePressure =
min(decay<LhsEval>(fs.pressure(refPressurePhaseIdx_())),
this->minRefPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectivePressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompPoroMult_.empty()) {
return this->rockCompPoroMult_[tableIdx].eval(effectivePressure, /*extrapolation=*/true);
}
// water compaction
assert(!this->rockCompPoroMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompPoroMultWc_[tableIdx].eval(effectivePressure, SwDeltaMax, /*extrapolation=*/true);
}
/*!
* \brief Calculate the transmissibility multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompTransMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
bool implicit = !EWOMS_GET_PARAM(TypeTag, bool, ExplicitRockCompaction);
return implicit ? this->simulator().problem().template computeRockCompTransMultiplier_<LhsEval>(intQuants, elementIdx)
: this->simulator().problem().getRockCompTransMultVal(elementIdx);
}
/*!
* \brief Calculate the transmissibility multiplier due to porosity reduction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval permFactTransMultiplier(const IntensiveQuantities& intQuants) const
{
OPM_TIMEBLOCK_LOCAL(permFactTransMultiplier);
if (!enableSaltPrecipitation)
return 1.0;
const auto& fs = intQuants.fluidState();
unsigned tableIdx = fs.pvtRegionIndex();
LhsEval porosityFactor = decay<LhsEval>(1. - fs.saltSaturation());
porosityFactor = min(porosityFactor, 1.0);
const auto& permfactTable = BrineModule::permfactTable(tableIdx);
return permfactTable.eval(porosityFactor, /*extrapolation=*/true);
}
/*!
* \brief Return the well transmissibility multiplier due to rock changues.
*/
template <class LhsEval>
LhsEval wellTransMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
OPM_TIMEBLOCK_LOCAL(wellTransMultiplier);
bool implicit = !EWOMS_GET_PARAM(TypeTag, bool, ExplicitRockCompaction);
double trans_mult = implicit ? this->simulator().problem().template computeRockCompTransMultiplier_<double>(intQuants, elementIdx)
: this->simulator().problem().getRockCompTransMultVal(elementIdx);
trans_mult *= this->simulator().problem().template permFactTransMultiplier<double>(intQuants);
return trans_mult;
}
std::pair<BCType, RateVector> boundaryCondition(const unsigned int globalSpaceIdx, const int directionId) const
{
OPM_TIMEBLOCK_LOCAL(boundaryCondition);
if (!nonTrivialBoundaryConditions_) {
return { BCType::NONE, RateVector(0.0) };
}
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
const auto& schedule = this->simulator().vanguard().schedule();
if (bcindex_(dir)[globalSpaceIdx] == 0) {
return { BCType::NONE, RateVector(0.0) };
}
if (schedule[this->episodeIndex()].bcprop.size() == 0) {
return { BCType::NONE, RateVector(0.0) };
}
const auto& bc = schedule[this->episodeIndex()].bcprop[bcindex_(dir)[globalSpaceIdx]];
if (bc.bctype!=BCType::RATE) {
return { bc.bctype, RateVector(0.0) };
}
RateVector rate = 0.0;
switch (bc.component) {
case BCComponent::OIL:
rate[Indices::canonicalToActiveComponentIndex(oilCompIdx)] = bc.rate;
break;
case BCComponent::GAS:
rate[Indices::canonicalToActiveComponentIndex(gasCompIdx)] = bc.rate;
break;
case BCComponent::WATER:
rate[Indices::canonicalToActiveComponentIndex(waterCompIdx)] = bc.rate;
break;
case BCComponent::SOLVENT:
if constexpr (!enableSolvent)
throw std::logic_error("solvent is disabled and you're trying to add solvent to BC");
rate[Indices::solventSaturationIdx] = bc.rate;
break;
case BCComponent::POLYMER:
if constexpr (!enablePolymer)
throw std::logic_error("polymer is disabled and you're trying to add polymer to BC");
rate[Indices::polymerConcentrationIdx] = bc.rate;
break;
case BCComponent::NONE:
throw std::logic_error("you need to specify the component when RATE type is set in BC");
break;
}
//TODO add support for enthalpy rate
return {bc.bctype, rate};
}
const std::unique_ptr<EclWriterType>& eclWriter() const
{
return eclWriter_;
}
void setConvData(const std::vector<std::vector<int>>& data)
{
eclWriter_->mutableEclOutputModule().setCnvData(data);
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(static_cast<BaseType&>(*this));
serializer(drift_);
serializer(wellModel_);
serializer(aquiferModel_);
serializer(tracerModel_);
serializer(*materialLawManager_);
serializer(*eclWriter_);
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
protected:
void updateExplicitQuantities_()
{
OPM_TIMEBLOCK(updateExplicitQuantities);
const bool invalidateFromMaxWaterSat = updateMaxWaterSaturation_();
const bool invalidateFromMinPressure = updateMinPressure_();
// update hysteresis and max oil saturation used in vappars
const bool invalidateFromHyst = updateHysteresis_();
const bool invalidateFromMaxOilSat = updateMaxOilSaturation_();
// the derivatives may have change
bool invalidateIntensiveQuantities
= invalidateFromMaxWaterSat || invalidateFromMinPressure || invalidateFromHyst || invalidateFromMaxOilSat;
if (invalidateIntensiveQuantities) {
OPM_TIMEBLOCK(beginTimeStepInvalidateIntensiveQuantities);
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
}
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>())
updateMaxPolymerAdsorption_();
updateRockCompTransMultVal_();
}
template<class UpdateFunc>
void updateProperty_(const std::string& failureMsg,
UpdateFunc func)
{
OPM_TIMEBLOCK(updateProperty);
const auto& model = this->simulator().model();
const auto& primaryVars = model.solution(/*timeIdx*/0);
const auto& vanguard = this->simulator().vanguard();
std::size_t numGridDof = primaryVars.size();
OPM_BEGIN_PARALLEL_TRY_CATCH();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++dofIdx) {
const auto& iq = *model.cachedIntensiveQuantities(dofIdx, /*timeIdx=*/ 0);
func(dofIdx, iq);
}
OPM_END_PARALLEL_TRY_CATCH(failureMsg, vanguard.grid().comm());
}
// update the parameters needed for DRSDT and DRVDT
void updateCompositionChangeLimits_()
{
OPM_TIMEBLOCK(updateCompositionChangeLimits);
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
int episodeIdx = this->episodeIndex();
std::array<bool,3> active{this->mixControls_.drsdtConvective(episodeIdx),
this->mixControls_.drsdtActive(episodeIdx),
this->mixControls_.drvdtActive(episodeIdx)};
if (!active[0] && !active[1] && !active[2]) {
return;
}
this->updateProperty_("EclProblem::updateCompositionChangeLimits_()) failed:",
[this,episodeIdx,active](unsigned compressedDofIdx,
const IntensiveQuantities& iq)
{
const DimMatrix& perm = this->intrinsicPermeability(compressedDofIdx);
const Scalar distZ = active[0] ? this->simulator().vanguard().cellThickness(compressedDofIdx) : 0.0;
const int pvtRegionIdx = this->pvtRegionIndex(compressedDofIdx);
this->mixControls_.update(compressedDofIdx,
iq,
episodeIdx,
this->gravity_[dim - 1],
perm[dim - 1][dim - 1],
distZ,
pvtRegionIdx,
active);
}
);
}
bool updateMaxOilSaturation_()
{
OPM_TIMEBLOCK(updateMaxOilSaturation);
int episodeIdx = this->episodeIndex();
// we use VAPPARS
if (this->vapparsActive(episodeIdx)) {
this->updateProperty_("EclProblem::updateMaxOilSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxOilSaturation_(compressedDofIdx,iq);
});
return true;
}
return false;
}
bool updateMaxOilSaturation_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
OPM_TIMEBLOCK_LOCAL(updateMaxOilSaturation);
const auto& fs = iq.fluidState();
const Scalar So = decay<Scalar>(fs.saturation(refPressurePhaseIdx_()));
auto& mos = this->maxOilSaturation_;
if(mos[compressedDofIdx] < So){
mos[compressedDofIdx] = So;
return true;
}else{
return false;
}
}
bool updateMaxWaterSaturation_()
{
OPM_TIMEBLOCK(updateMaxWaterSaturation);
// water compaction is activated in ROCKCOMP
if (this->maxWaterSaturation_.empty())
return false;
this->maxWaterSaturation_[/*timeIdx=*/1] = this->maxWaterSaturation_[/*timeIdx=*/0];
this->updateProperty_("EclProblem::updateMaxWaterSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxWaterSaturation_(compressedDofIdx,iq);
});
return true;
}
bool updateMaxWaterSaturation_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
OPM_TIMEBLOCK_LOCAL(updateMaxWaterSaturation);
const auto& fs = iq.fluidState();
const Scalar Sw = decay<Scalar>(fs.saturation(waterPhaseIdx));
auto& mow = this->maxWaterSaturation_;
if(mow[compressedDofIdx]< Sw){
mow[compressedDofIdx] = Sw;
return true;
}else{
return false;
}
}
bool updateMinPressure_()
{
OPM_TIMEBLOCK(updateMinPressure);
// IRREVERS option is used in ROCKCOMP
if (this->minRefPressure_.empty())
return false;
this->updateProperty_("EclProblem::updateMinPressure_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMinPressure_(compressedDofIdx,iq);
});
return true;
}
bool updateMinPressure_(unsigned compressedDofIdx, const IntensiveQuantities& iq){
OPM_TIMEBLOCK_LOCAL(updateMinPressure);
const auto& fs = iq.fluidState();
const Scalar min_pressure = getValue(fs.pressure(refPressurePhaseIdx_()));
auto& min_pressures = this->minRefPressure_;
if(min_pressures[compressedDofIdx]> min_pressure){
min_pressures[compressedDofIdx] = min_pressure;
return true;
}else{
return false;
}
}
// \brief Function to assign field properties of type double, on the leaf grid view.
//
// For CpGrid with local grid refinement, the field property of a cell on the leaf
// is inherited from its parent or equivalent (when has no parent) cell on level zero.
std::function<std::vector<double>(const FieldPropsManager&, const std::string&, const unsigned int&)>
fieldPropDoubleOnLeafAssigner_()
{
const auto& lookup = this->lookUpData_;
return [&lookup](const FieldPropsManager& fieldPropManager, const std::string& propString,
const unsigned int& numElems)
{
return lookup.assignFieldPropsDoubleOnLeaf(fieldPropManager, propString, numElems);
};
}
// \brief Function to assign field properties of type int, unsigned int, ..., on the leaf grid view.
//
// For CpGrid with local grid refinement, the field property of a cell on the leaf
// is inherited from its parent or equivalent (when has no parent) cell on level zero.
template<typename IntType>
std::function<std::vector<IntType>(const FieldPropsManager&, const std::string&, const unsigned int&, bool)>
fieldPropIntTypeOnLeafAssigner_()
{
const auto& lookup = this->lookUpData_;
return [&lookup](const FieldPropsManager& fieldPropManager, const std::string& propString,
const unsigned int& numElems, bool needsTranslation)
{
return lookup.template assignFieldPropsIntOnLeaf<IntType>(fieldPropManager, propString,
numElems, needsTranslation);
};
}
void readMaterialParameters_()
{
OPM_TIMEBLOCK(readMaterialParameters);
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// the PVT and saturation region numbers
OPM_BEGIN_PARALLEL_TRY_CATCH();
this->updatePvtnum_();
this->updateSatnum_();
// the MISC region numbers (solvent model)
this->updateMiscnum_();
// the PLMIX region numbers (polymer model)
this->updatePlmixnum_();
// directional relative permeabilities
this->updateKrnum_();
OPM_END_PARALLEL_TRY_CATCH("Invalid region numbers: ", vanguard.gridView().comm());
////////////////////////////////
// porosity
updateReferencePorosity_();
this->referencePorosity_[1] = this->referencePorosity_[0];
////////////////////////////////
////////////////////////////////
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
materialLawManager_ = std::make_shared<EclMaterialLawManager>();
materialLawManager_->initFromState(eclState);
materialLawManager_->initParamsForElements(eclState, this->model().numGridDof(),
this-> template fieldPropIntTypeOnLeafAssigner_<int>(),
this-> lookupIdxOnLevelZeroAssigner_());
////////////////////////////////
}
void readThermalParameters_()
{
if constexpr (enableEnergy)
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
thermalLawManager_ = std::make_shared<EclThermalLawManager>();
thermalLawManager_->initParamsForElements(eclState, this->model().numGridDof(),
this-> fieldPropDoubleOnLeafAssigner_(),
this-> template fieldPropIntTypeOnLeafAssigner_<unsigned int>());
}
}
void updateReferencePorosity_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
std::size_t numDof = this->model().numGridDof();
this->referencePorosity_[/*timeIdx=*/0].resize(numDof);
const auto& fp = eclState.fieldProps();
const std::vector<double> porvData = fp.porv(false);
for (std::size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
Scalar poreVolume = porvData[dofIdx];
// we define the porosity as the accumulated pore volume divided by the
// geometric volume of the element. Note that -- in pathetic cases -- it can
// be larger than 1.0!
Scalar dofVolume = simulator.model().dofTotalVolume(dofIdx);
assert(dofVolume > 0.0);
this->referencePorosity_[/*timeIdx=*/0][dofIdx] = poreVolume/dofVolume;
}
}
void readInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
if (eclState.getInitConfig().hasEquil())
readEquilInitialCondition_();
else
readExplicitInitialCondition_();
if constexpr (enableSolvent || enablePolymer || enablePolymerMolarWeight || enableMICP)
this->readBlackoilExtentionsInitialConditions_(this->model().numGridDof(),
enableSolvent,
enablePolymer,
enablePolymerMolarWeight,
enableMICP);
//initialize min/max values
std::size_t numElems = this->model().numGridDof();
for (std::size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
const auto& fs = initialFluidStates_[elemIdx];
if (!this->maxWaterSaturation_.empty())
this->maxWaterSaturation_[elemIdx] = std::max(this->maxWaterSaturation_[elemIdx], fs.saturation(waterPhaseIdx));
if (!this->maxOilSaturation_.empty())
this->maxOilSaturation_[elemIdx] = std::max(this->maxOilSaturation_[elemIdx], fs.saturation(oilPhaseIdx));
if (!this->minRefPressure_.empty())
this->minRefPressure_[elemIdx] = std::min(this->minRefPressure_[elemIdx], fs.pressure(refPressurePhaseIdx_()));
}
}
void readEquilInitialCondition_()
{
const auto& simulator = this->simulator();
// initial condition corresponds to hydrostatic conditions.
using EquilInitializer = EclEquilInitializer<TypeTag>;
EquilInitializer equilInitializer(simulator, *materialLawManager_);
std::size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
for (std::size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
}
}
void readEclRestartSolution_()
{
// Throw an exception if the grid has LGRs. Refined grid are not supported for restart.
if(this->simulator().vanguard().grid().maxLevel() > 0) {
throw std::invalid_argument("Refined grids are not yet supported for restart ");
}
// Set the start time of the simulation
auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
{
int restart_step = initconfig.getRestartStep();
simulator.setTime(schedule.seconds(restart_step));
simulator.startNextEpisode(simulator.startTime() + simulator.time(),
schedule.stepLength(restart_step));
simulator.setEpisodeIndex(restart_step);
}
eclWriter_->beginRestart();
Scalar dt = std::min(eclWriter_->restartTimeStepSize(), simulator.episodeLength());
simulator.setTimeStepSize(dt);
std::size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
if constexpr (enableSolvent) {
this->solventSaturation_.resize(numElems, 0.0);
this->solventRsw_.resize(numElems, 0.0);
}
if constexpr (enablePolymer)
this->polymer_.concentration.resize(numElems, 0.0);
if constexpr (enablePolymerMolarWeight) {
const std::string msg {"Support of the RESTART for polymer molecular weight "
"is not implemented yet. The polymer weight value will be "
"zero when RESTART begins"};
OpmLog::warning("NO_POLYMW_RESTART", msg);
this->polymer_.moleWeight.resize(numElems, 0.0);
}
if constexpr (enableMICP) {
this->micp_.resize(numElems);
}
for (std::size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
eclWriter_->eclOutputModule().initHysteresisParams(simulator, elemIdx);
eclWriter_->eclOutputModule().assignToFluidState(elemFluidState, elemIdx);
// Note: Function processRestartSaturations_() mutates the
// 'ssol' argument--the value from the restart file--if solvent
// is enabled. Then, store the updated solvent saturation into
// 'solventSaturation_'. Otherwise, just pass a dummy value to
// the function and discard the unchanged result. Do not index
// into 'solventSaturation_' unless solvent is enabled.
{
auto ssol = enableSolvent
? eclWriter_->eclOutputModule().getSolventSaturation(elemIdx)
: Scalar(0);
processRestartSaturations_(elemFluidState, ssol);
if constexpr (enableSolvent) {
this->solventSaturation_[elemIdx] = ssol;
this->solventRsw_[elemIdx] = eclWriter_->eclOutputModule().getSolventRsw(elemIdx);
}
}
this->mixControls_.updateLastValues(elemIdx, elemFluidState.Rs(), elemFluidState.Rv());
if constexpr (enablePolymer)
this->polymer_.concentration[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx);
if constexpr (enableMICP){
this->micp_.microbialConcentration[elemIdx] = eclWriter_->eclOutputModule().getMicrobialConcentration(elemIdx);
this->micp_.oxygenConcentration[elemIdx] = eclWriter_->eclOutputModule().getOxygenConcentration(elemIdx);
this->micp_.ureaConcentration[elemIdx] = eclWriter_->eclOutputModule().getUreaConcentration(elemIdx);
this->micp_.biofilmConcentration[elemIdx] = eclWriter_->eclOutputModule().getBiofilmConcentration(elemIdx);
this->micp_.calciteConcentration[elemIdx] = eclWriter_->eclOutputModule().getCalciteConcentration(elemIdx);
}
// if we need to restart for polymer molecular weight simulation, we need to add related here
}
const int episodeIdx = this->episodeIndex();
this->mixControls_.updateMaxValues(episodeIdx, simulator.timeStepSize());
// assign the restart solution to the current solution. note that we still need
// to compute real initial solution after this because the initial fluid states
// need to be correct for stuff like boundary conditions.
auto& sol = this->model().solution(/*timeIdx=*/0);
const auto& gridView = this->gridView();
ElementContext elemCtx(simulator);
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
initial(sol[elemIdx], elemCtx, /*spaceIdx=*/0, /*timeIdx=*/0);
}
// make sure that the ghost and overlap entities exhibit the correct
// solution. alternatively, this could be done in the loop above by also
// considering non-interior elements. Since the initial() method might not work
// 100% correctly for such elements, let's play safe and explicitly synchronize
// using message passing.
this->model().syncOverlap();
eclWriter_->endRestart();
}
void processRestartSaturations_(InitialFluidState& elemFluidState, Scalar& solventSaturation)
{
// each phase needs to be above certain value to be claimed to be existing
// this is used to recover some RESTART running with the defaulted single-precision format
const Scalar smallSaturationTolerance = 1.e-6;
Scalar sumSaturation = 0.0;
for (std::size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (elemFluidState.saturation(phaseIdx) < smallSaturationTolerance)
elemFluidState.setSaturation(phaseIdx, 0.0);
sumSaturation += elemFluidState.saturation(phaseIdx);
}
}
if constexpr (enableSolvent) {
if (solventSaturation < smallSaturationTolerance)
solventSaturation = 0.0;
sumSaturation += solventSaturation;
}
assert(sumSaturation > 0.0);
for (std::size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
const Scalar saturation = elemFluidState.saturation(phaseIdx) / sumSaturation;
elemFluidState.setSaturation(phaseIdx, saturation);
}
}
if constexpr (enableSolvent) {
solventSaturation = solventSaturation / sumSaturation;
}
}
void readExplicitInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
const auto& fp = eclState.fieldProps();
bool has_swat = fp.has_double("SWAT");
bool has_sgas = fp.has_double("SGAS");
bool has_rs = fp.has_double("RS");
bool has_rv = fp.has_double("RV");
bool has_rvw = fp.has_double("RVW");
bool has_pressure = fp.has_double("PRESSURE");
bool has_salt = fp.has_double("SALT");
bool has_saltp = fp.has_double("SALTP");
// make sure all required quantities are enables
if (Indices::numPhases > 1) {
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !has_swat)
throw std::runtime_error("The ECL input file requires the presence of the SWAT keyword if "
"the water phase is active");
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !has_sgas && FluidSystem::phaseIsActive(oilPhaseIdx))
throw std::runtime_error("The ECL input file requires the presence of the SGAS keyword if "
"the gas phase is active");
}
if (!has_pressure)
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
"keyword if the model is initialized explicitly");
if (FluidSystem::enableDissolvedGas() && !has_rs)
throw std::runtime_error("The ECL input file requires the RS keyword to be present if"
" dissolved gas is enabled");
if (FluidSystem::enableVaporizedOil() && !has_rv)
throw std::runtime_error("The ECL input file requires the RV keyword to be present if"
" vaporized oil is enabled");
if (FluidSystem::enableVaporizedWater() && !has_rvw)
throw std::runtime_error("The ECL input file requires the RVW keyword to be present if"
" vaporized water is enabled");
if (enableBrine && !has_salt)
throw std::runtime_error("The ECL input file requires the SALT keyword to be present if"
" brine is enabled and the model is initialized explicitly");
if (enableSaltPrecipitation && !has_saltp)
throw std::runtime_error("The ECL input file requires the SALTP keyword to be present if"
" salt precipitation is enabled and the model is initialized explicitly");
std::size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
std::vector<double> waterSaturationData;
std::vector<double> gasSaturationData;
std::vector<double> pressureData;
std::vector<double> rsData;
std::vector<double> rvData;
std::vector<double> rvwData;
std::vector<double> tempiData;
std::vector<double> saltData;
std::vector<double> saltpData;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && Indices::numPhases > 1)
waterSaturationData = fp.get_double("SWAT");
else
waterSaturationData.resize(numDof);
if (FluidSystem::phaseIsActive(gasPhaseIdx) && FluidSystem::phaseIsActive(oilPhaseIdx))
gasSaturationData = fp.get_double("SGAS");
else
gasSaturationData.resize(numDof);
pressureData = fp.get_double("PRESSURE");
if (FluidSystem::enableDissolvedGas())
rsData = fp.get_double("RS");
if (FluidSystem::enableVaporizedOil())
rvData = fp.get_double("RV");
if (FluidSystem::enableVaporizedWater())
rvwData = fp.get_double("RVW");
// initial reservoir temperature
tempiData = fp.get_double("TEMPI");
// initial salt concentration data
if constexpr (enableBrine)
saltData = fp.get_double("SALT");
// initial precipitated salt saturation data
if constexpr (enableSaltPrecipitation)
saltpData = fp.get_double("SALTP");
// calculate the initial fluid states
for (std::size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto& dofFluidState = initialFluidStates_[dofIdx];
dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
//////
// set temperature
//////
Scalar temperatureLoc = tempiData[dofIdx];
if (!std::isfinite(temperatureLoc) || temperatureLoc <= 0)
temperatureLoc = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperatureLoc);
//////
// set salt concentration
//////
if constexpr (enableBrine)
dofFluidState.setSaltConcentration(saltData[dofIdx]);
//////
// set precipitated salt saturation
//////
if constexpr (enableSaltPrecipitation)
dofFluidState.setSaltSaturation(saltpData[dofIdx]);
//////
// set saturations
//////
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[dofIdx]);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
1.0
- waterSaturationData[dofIdx]);
}
else
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[dofIdx]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1.0
- waterSaturationData[dofIdx]
- gasSaturationData[dofIdx]);
//////
// set phase pressures
//////
Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
dofFluidState.setPressure(phaseIdx, pressure);
}
if (FluidSystem::enableDissolvedGas())
dofFluidState.setRs(rsData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRs(0.0);
if (FluidSystem::enableVaporizedOil())
dofFluidState.setRv(rvData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
dofFluidState.setRvw(rvwData[dofIdx]);
//////
// set invB_
//////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setDensity(phaseIdx, rho);
}
}
}
// update the hysteresis parameters of the material laws for the whole grid
bool updateHysteresis_()
{
if (!materialLawManager_->enableHysteresis())
return false;
// we need to update the hysteresis data for _all_ elements (i.e., not just the
// interior ones) to avoid desynchronization of the processes in the parallel case!
this->updateProperty_("EclProblem::updateHysteresis_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
materialLawManager_->updateHysteresis(iq.fluidState(), compressedDofIdx);
});
return true;
}
bool updateHysteresis_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
OPM_TIMEBLOCK_LOCAL(updateHysteresis_);
materialLawManager_->updateHysteresis(iq.fluidState(), compressedDofIdx);
//TODO change materials to give a bool
return true;
}
void updateMaxPolymerAdsorption_()
{
// we need to update the max polymer adsoption data for all elements
this->updateProperty_("EclProblem::updateMaxPolymerAdsorption_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxPolymerAdsorption_(compressedDofIdx,iq);
});
}
bool updateMaxPolymerAdsorption_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const Scalar pa = scalarValue(iq.polymerAdsorption());
auto& mpa = this->polymer_.maxAdsorption;
if (mpa[compressedDofIdx] < pa) {
mpa[compressedDofIdx] = pa;
return true;
} else {
return false;
}
}
Scalar getRockCompTransMultVal(std::size_t dofIdx) const
{
if (this->rockCompTransMultVal_.empty())
return 1.0;
return this->rockCompTransMultVal_[dofIdx];
}
private:
struct PffDofData_
{
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransIn;
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransOut;
ConditionalStorage<enableDiffusion, Scalar> diffusivity;
ConditionalStorage<enableDispersion, Scalar> dispersivity;
Scalar transmissibility;
};
// update the prefetch friendly data object
void updatePffDofData_()
{
const auto& distFn =
[this](PffDofData_& dofData,
const Stencil& stencil,
unsigned localDofIdx)
-> void
{
const auto& elementMapper = this->model().elementMapper();
unsigned globalElemIdx = elementMapper.index(stencil.entity(localDofIdx));
if (localDofIdx != 0) {
unsigned globalCenterElemIdx = elementMapper.index(stencil.entity(/*dofIdx=*/0));
dofData.transmissibility = transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
if constexpr (enableEnergy) {
*dofData.thermalHalfTransIn = transmissibilities_.thermalHalfTrans(globalCenterElemIdx, globalElemIdx);
*dofData.thermalHalfTransOut = transmissibilities_.thermalHalfTrans(globalElemIdx, globalCenterElemIdx);
}
if constexpr (enableDiffusion)
*dofData.diffusivity = transmissibilities_.diffusivity(globalCenterElemIdx, globalElemIdx);
if (enableDispersion)
dofData.dispersivity = transmissibilities_.dispersivity(globalCenterElemIdx, globalElemIdx);
}
};
pffDofData_.update(distFn);
}
void readBoundaryConditions_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& bcconfig = vanguard.eclState().getSimulationConfig().bcconfig();
if (bcconfig.size() > 0) {
nonTrivialBoundaryConditions_ = true;
std::size_t numCartDof = vanguard.cartesianSize();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
std::vector<int> cartesianToCompressedElemIdx(numCartDof, -1);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx)
cartesianToCompressedElemIdx[vanguard.cartesianIndex(elemIdx)] = elemIdx;
bcindex_.resize(numElems, 0);
auto loopAndApply = [&cartesianToCompressedElemIdx,
&vanguard](const auto& bcface,
auto apply)
{
for (int i = bcface.i1; i <= bcface.i2; ++i) {
for (int j = bcface.j1; j <= bcface.j2; ++j) {
for (int k = bcface.k1; k <= bcface.k2; ++k) {
std::array<int, 3> tmp = {i,j,k};
auto elemIdx = cartesianToCompressedElemIdx[vanguard.cartesianIndex(tmp)];
if (elemIdx >= 0)
apply(elemIdx);
}
}
}
};
for (const auto& bcface : bcconfig) {
std::vector<int>& data = bcindex_(bcface.dir);
const int index = bcface.index;
loopAndApply(bcface,
[&data,index](int elemIdx)
{ data[elemIdx] = index; });
}
}
}
// this method applies the runtime constraints specified via the deck and/or command
// line parameters for the size of the next time step.
Scalar limitNextTimeStepSize_(Scalar dtNext) const
{
if constexpr (enableExperiments) {
const auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
int episodeIdx = simulator.episodeIndex();
// first thing in the morning, limit the time step size to the maximum size
Scalar maxTimeStepSize = EWOMS_GET_PARAM(TypeTag, double, SolverMaxTimeStepInDays)*24*60*60;
int reportStepIdx = std::max(episodeIdx, 0);
if (this->enableTuning_) {
const auto& tuning = schedule[reportStepIdx].tuning();
maxTimeStepSize = tuning.TSMAXZ;
}
dtNext = std::min(dtNext, maxTimeStepSize);
Scalar remainingEpisodeTime =
simulator.episodeStartTime() + simulator.episodeLength()
- (simulator.startTime() + simulator.time());
assert(remainingEpisodeTime >= 0.0);
// if we would have a small amount of time left over in the current episode, make
// two equal time steps instead of a big and a small one
if (remainingEpisodeTime/2.0 < dtNext && dtNext < remainingEpisodeTime*(1.0 - 1e-5))
// note: limiting to the maximum time step size here is probably not strictly
// necessary, but it should not hurt and is more fool-proof
dtNext = std::min(maxTimeStepSize, remainingEpisodeTime/2.0);
if (simulator.episodeStarts()) {
// if a well event occurred, respect the limit for the maximum time step after
// that, too
const auto& events = simulator.vanguard().schedule()[reportStepIdx].events();
bool wellEventOccured =
events.hasEvent(ScheduleEvents::NEW_WELL)
|| events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE)
|| events.hasEvent(ScheduleEvents::INJECTION_UPDATE)
|| events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
if (episodeIdx >= 0 && wellEventOccured && this->maxTimeStepAfterWellEvent_ > 0)
dtNext = std::min(dtNext, this->maxTimeStepAfterWellEvent_);
}
}
return dtNext;
}
void computeAndSetEqWeights_()
{
std::vector<Scalar> sumInvB(numPhases, 0.0);
const auto& gridView = this->gridView();
ElementContext elemCtx(this->simulator());
for(const auto& elem: elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& dofFluidState = initialFluidStates_[elemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
sumInvB[phaseIdx] += dofFluidState.invB(phaseIdx);
}
}
std::size_t numDof = this->model().numGridDof();
const auto& comm = this->simulator().vanguard().grid().comm();
comm.sum(sumInvB.data(),sumInvB.size());
Scalar numTotalDof = comm.sum(numDof);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar avgB = numTotalDof / sumInvB[phaseIdx];
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
this->model().setEqWeight(activeSolventCompIdx, avgB);
}
}
int refPressurePhaseIdx_() const {
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
return oilPhaseIdx;
}
else if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
return gasPhaseIdx;
}
else {
return waterPhaseIdx;
}
}
void updateRockCompTransMultVal_()
{
const auto& model = this->simulator().model();
std::size_t numGridDof = this->model().numGridDof();
this->rockCompTransMultVal_.resize(numGridDof, 1.0);
for (std::size_t elementIdx = 0; elementIdx < numGridDof; ++elementIdx) {
const auto& iq = *model.cachedIntensiveQuantities(elementIdx, /*timeIdx=*/ 0);
Scalar trans_mult = computeRockCompTransMultiplier_<Scalar>(iq, elementIdx);
this->rockCompTransMultVal_[elementIdx] = trans_mult;
}
}
/*!
* \brief Calculate the transmissibility multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval computeRockCompTransMultiplier_(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
OPM_TIMEBLOCK_LOCAL(computeRockCompTransMultiplier);
if (this->rockCompTransMult_.empty() && this->rockCompTransMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectivePressure = decay<LhsEval>(fs.pressure(refPressurePhaseIdx_()));
if (!this->minRefPressure_.empty())
// The pore space change is irreversible
effectivePressure =
min(decay<LhsEval>(fs.pressure(refPressurePhaseIdx_())),
this->minRefPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectivePressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompTransMult_.empty())
return this->rockCompTransMult_[tableIdx].eval(effectivePressure, /*extrapolation=*/true);
// water compaction
assert(!this->rockCompTransMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompTransMultWc_[tableIdx].eval(effectivePressure, SwDeltaMax, /*extrapolation=*/true);
}
typename Vanguard::TransmissibilityType transmissibilities_;
std::shared_ptr<EclMaterialLawManager> materialLawManager_;
std::shared_ptr<EclThermalLawManager> thermalLawManager_;
EclThresholdPressure<TypeTag> thresholdPressures_;
std::vector<InitialFluidState> initialFluidStates_;
bool enableDriftCompensation_;
GlobalEqVector drift_;
EclWellModel wellModel_;
bool enableAquifers_;
EclAquiferModel aquiferModel_;
bool enableEclOutput_;
std::unique_ptr<EclWriterType> eclWriter_;
#if HAVE_DAMARIS
bool enableDamarisOutput_ = false ;
std::unique_ptr<DamarisWriterType> damarisWriter_;
#endif
PffGridVector<GridView, Stencil, PffDofData_, DofMapper> pffDofData_;
TracerModel tracerModel_;
EclActionHandler actionHandler_;
template<class T>
struct BCData
{
std::array<std::vector<T>,6> data;
void resize(std::size_t size, T defVal)
{
for (auto& d : data)
d.resize(size, defVal);
}
const std::vector<T>& operator()(FaceDir::DirEnum dir) const
{
if (dir == FaceDir::DirEnum::Unknown)
throw std::runtime_error("Tried to access BC data for the 'Unknown' direction");
int idx = 0;
int div = static_cast<int>(dir);
while ((div /= 2) >= 1)
++idx;
assert(idx >= 0 && idx <= 5);
return data[idx];
}
std::vector<T>& operator()(FaceDir::DirEnum dir)
{
return const_cast<std::vector<T>&>(std::as_const(*this)(dir));
}
};
BCData<int> bcindex_;
bool nonTrivialBoundaryConditions_ = false;
};
} // namespace Opm
#endif