opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoil_impl.hpp

361 lines
14 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp>
#include <opm/autodiff/SimulatorFullyImplicitBlackoil.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/core/grid.h>
#include <opm/core/wells.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/io/vtk/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/grid/ColumnExtract.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include <memory>
#include <numeric>
#include <fstream>
#include <iostream>
namespace Opm
{
template<class T>
class SimulatorFullyImplicitBlackoil<T>::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const Grid& grid,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state);
private:
// Data.
// Parameters for output.
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Observed objects.
const Grid& grid_;
BlackoilPropsAdInterface& props_;
const RockCompressibility* rock_comp_props_;
WellsManager& wells_manager_;
const Wells* wells_;
const double* gravity_;
// Solvers
DerivedGeology geo_;
FullyImplicitBlackoilSolver<Grid> solver_;
// Misc. data
std::vector<int> allcells_;
};
template<class T>
SimulatorFullyImplicitBlackoil<T>::SimulatorFullyImplicitBlackoil(const parameter::ParameterGroup& param,
const Grid& grid,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, linsolver, gravity));
}
template<class T>
SimulatorReport SimulatorFullyImplicitBlackoil<T>::run(SimulatorTimer& timer,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state)
{
return pimpl_->run(timer, state, well_state);
}
static void outputWellStateMatlab(const Opm::WellStateFullyImplicitBlackoil& well_state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["bhp"] = &well_state.bhp();
dm["wellrates"] = &well_state.wellRates();
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error,"Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error,"Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
#if 0
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
#endif
// \TODO: Treat bcs.
template<class T>
SimulatorFullyImplicitBlackoil<T>::Impl::Impl(const parameter::ParameterGroup& param,
const Grid& grid,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity)
: grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
wells_manager_(wells_manager),
wells_(wells_manager.c_wells()),
gravity_(gravity),
geo_(grid_, props_, gravity_),
solver_(param, grid_, props_, geo_, rock_comp_props, *wells_manager.c_wells(), linsolver)
/* param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, */
{
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Misc init.
const int num_cells = AutoDiffGrid::numCells(grid);
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
template<class T>
SimulatorReport SimulatorFullyImplicitBlackoil<T>::Impl::run(SimulatorTimer& timer,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state)
{
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(AutoDiffGrid::numCells(grid_), AutoDiffGrid::beginCellVolumes(grid_), props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(AutoDiffGrid::numCells(grid_), AutoDiffGrid::beginCellVolumes(grid_), props_.porosity(), porevol);
}
// const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch solver_timer;
double stime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
while (!timer.done()) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Solve pressure equation.
// if (check_well_controls_) {
// computeFractionalFlow(props_, allcells_,
// state.pressure(), state.surfacevol(), state.saturation(),
// fractional_flows);
// wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
// }
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
solver_timer.start();
std::vector<double> initial_pressure = state.pressure();
solver_.step(timer.currentStepLength(), state, well_state);
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
sreport.pressure_time = st;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_state.wellRates(), well_state.wellRates());
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(AutoDiffGrid::numCells(grid_), AutoDiffGrid::beginCellVolumes(grid_), props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Hysteresis
props_.updateSatHyst(state.saturation(), allcells_);
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
tstep_os.close();
}
// advance to next timestep before reporting at this location
// ++timer; // Commented out since this has temporarily moved to the main() function.
break; // this is a temporary measure
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = stime;
report.transport_time = 0.0;
report.total_time = total_timer.secsSinceStart();
return report;
}
} // namespace Opm