opm-simulators/opm/polymer/fullyimplicit/BlackoilPolymerModel_impl.hpp
Kai Bao fbe7143f54 using WellModel functions in BlackoilPolymerModel.
reducing some repeated code.
2016-05-23 15:11:52 +02:00

775 lines
32 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED
#define OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED
#include <opm/polymer/fullyimplicit/BlackoilPolymerModel.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
namespace Opm {
namespace detail {
template <class PU>
int polymerPos(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
int pos = 0;
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[phase]) {
pos++;
}
}
return pos;
}
} // namespace detail
template <class Grid>
BlackoilPolymerModel<Grid>::BlackoilPolymerModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const PolymerPropsAd& polymer_props_ad,
const StandardWells& well_model,
const NewtonIterationBlackoilInterface& linsolver,
EclipseStateConstPtr eclipse_state,
const bool has_disgas,
const bool has_vapoil,
const bool has_polymer,
const bool has_plyshlog,
const bool has_shrate,
const std::vector<double>& wells_rep_radius,
const std::vector<double>& wells_perf_length,
const std::vector<double>& wells_bore_diameter,
const bool terminal_output)
: Base(param, grid, fluid, geo, rock_comp_props, well_model, linsolver, eclipse_state,
has_disgas, has_vapoil, terminal_output),
polymer_props_ad_(polymer_props_ad),
has_polymer_(has_polymer),
has_plyshlog_(has_plyshlog),
has_shrate_(has_shrate),
poly_pos_(detail::polymerPos(fluid.phaseUsage())),
wells_rep_radius_(wells_rep_radius),
wells_perf_length_(wells_perf_length),
wells_bore_diameter_(wells_bore_diameter)
{
if (has_polymer_) {
if (!active_[Water]) {
OPM_THROW(std::logic_error, "Polymer must solved in water!\n");
}
residual_.matbalscale.resize(fluid_.numPhases() + 1, 1.1169); // use the same as the water phase
// If deck has polymer, residual_ should contain polymer equation.
rq_.resize(fluid_.numPhases() + 1);
residual_.material_balance_eq.resize(fluid_.numPhases() + 1, ADB::null());
Base::material_name_.push_back("Polymer");
assert(poly_pos_ == fluid_.numPhases());
}
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::
prepareStep(const double dt,
ReservoirState& reservoir_state,
WellState& well_state)
{
Base::prepareStep(dt, reservoir_state, well_state);
auto& max_concentration = reservoir_state.getCellData( reservoir_state.CMAX );
// Initial max concentration of this time step from PolymerBlackoilState.
cmax_ = Eigen::Map<const V>(max_concentration.data(), Opm::AutoDiffGrid::numCells(grid_));
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::
afterStep(const double /* dt */,
ReservoirState& reservoir_state,
WellState& /* well_state */)
{
computeCmax(reservoir_state);
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::makeConstantState(SolutionState& state) const
{
Base::makeConstantState(state);
state.concentration = ADB::constant(state.concentration.value());
}
template <class Grid>
std::vector<V>
BlackoilPolymerModel<Grid>::variableStateInitials(const ReservoirState& x,
const WellState& xw) const
{
std::vector<V> vars0 = Base::variableStateInitials(x, xw);
assert(int(vars0.size()) == fluid_.numPhases() + 2);
// Initial polymer concentration.
if (has_polymer_) {
const auto& concentration = x.getCellData( x.CONCENTRATION );
assert (not concentration.empty());
const int nc = concentration.size();
const V c = Eigen::Map<const V>(concentration.data() , nc);
// Concentration belongs after other reservoir vars but before well vars.
auto concentration_pos = vars0.begin() + fluid_.numPhases();
assert(concentration_pos == vars0.end() - 2);
vars0.insert(concentration_pos, c);
}
return vars0;
}
template <class Grid>
std::vector<int>
BlackoilPolymerModel<Grid>::variableStateIndices() const
{
std::vector<int> ind = Base::variableStateIndices();
assert(ind.size() == 5);
if (has_polymer_) {
ind.resize(6);
// Concentration belongs after other reservoir vars but before well vars.
ind[Concentration] = fluid_.numPhases();
// Concentration is pushing back the well vars.
++ind[Qs];
++ind[Bhp];
}
return ind;
}
template <class Grid>
typename BlackoilPolymerModel<Grid>::SolutionState
BlackoilPolymerModel<Grid>::variableStateExtractVars(const ReservoirState& x,
const std::vector<int>& indices,
std::vector<ADB>& vars) const
{
SolutionState state = Base::variableStateExtractVars(x, indices, vars);
if (has_polymer_) {
state.concentration = std::move(vars[indices[Concentration]]);
}
return state;
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::computeAccum(const SolutionState& state,
const int aix )
{
Base::computeAccum(state, aix);
// Compute accumulation of polymer equation only if needed.
if (has_polymer_) {
const ADB& press = state.pressure;
const std::vector<ADB>& sat = state.saturation;
const ADB& c = state.concentration;
const ADB pv_mult = poroMult(press); // also computed in Base::computeAccum, could be optimized.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
// compute polymer properties.
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
const ADB ads = polymer_props_ad_.adsorption(state.concentration, cmax);
const double rho_rock = polymer_props_ad_.rockDensity();
const V phi = Eigen::Map<const V>(&fluid_.porosity()[0], AutoDiffGrid::numCells(grid_));
const double dead_pore_vol = polymer_props_ad_.deadPoreVol();
// Compute polymer accumulation term.
rq_[poly_pos_].accum[aix] = pv_mult * rq_[pu.phase_pos[Water]].b * sat[pu.phase_pos[Water]] * c * (1. - dead_pore_vol)
+ pv_mult * rho_rock * (1. - phi) / phi * ads;
}
}
template <class Grid>
void BlackoilPolymerModel<Grid>::computeCmax(ReservoirState& state)
{
auto& max_concentration = state.getCellData( state.CMAX );
const auto& concentration = state.getCellData( state.CONCENTRATION );
std::transform( max_concentration.begin() ,
max_concentration.end() ,
concentration.begin() ,
max_concentration.begin() ,
[](double c_max , double c) { return std::max( c_max , c ); });
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::
assembleMassBalanceEq(const SolutionState& state)
{
// Base::assembleMassBalanceEq(state);
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in rq_[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// on the initial call to assemble() and stored in rq_[phase].accum[0].
computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const std::vector<ADB> kr = computeRelPerm(state);
if (has_plyshlog_) {
std::vector<double> water_vel;
std::vector<double> visc_mult;
computeWaterShearVelocityFaces(transi, kr, state.canonical_phase_pressures, state, water_vel, visc_mult);
if ( !polymer_props_ad_.computeShearMultLog(water_vel, visc_mult, shear_mult_faces_) ) {
// std::cerr << " failed in calculating the shear-multiplier " << std::endl;
OPM_THROW(std::runtime_error, " failed in calculating the shear-multiplier. ");
}
}
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
const std::vector<PhasePresence>& cond = phaseCondition();
const ADB mu = fluidViscosity(canph_[phaseIdx], state.canonical_phase_pressures[canph_[phaseIdx]], state.temperature, state.rs, state.rv, cond);
const ADB rho = fluidDensity(canph_[phaseIdx], rq_[phaseIdx].b, state.rs, state.rv);
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], mu, rho, state.canonical_phase_pressures[canph_[phaseIdx]], state);
residual_.material_balance_eq[ phaseIdx ] =
pvdt_ * (rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
+ ops_.div*rq_[phaseIdx].mflux;
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
// Add the extra (flux) terms to the mass balance equations
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
const UpwindSelector<double> upwindOil(grid_, ops_,
rq_[po].dh.value());
const ADB rs_face = upwindOil.select(state.rs);
const UpwindSelector<double> upwindGas(grid_, ops_,
rq_[pg].dh.value());
const ADB rv_face = upwindGas.select(state.rv);
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux);
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux);
// OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]);
}
// Add polymer equation.
if (has_polymer_) {
residual_.material_balance_eq[poly_pos_] = pvdt_ * (rq_[poly_pos_].accum[1] - rq_[poly_pos_].accum[0])
+ ops_.div*rq_[poly_pos_].mflux;
}
if (param_.update_equations_scaling_) {
updateEquationsScaling();
}
}
template <class Grid>
void BlackoilPolymerModel<Grid>::updateEquationsScaling()
{
Base::updateEquationsScaling();
if (has_polymer_) {
const int water_pos = fluid_.phaseUsage().phase_pos[Water];
residual_.matbalscale[poly_pos_] = residual_.matbalscale[water_pos];
}
}
template <class Grid>
void BlackoilPolymerModel<Grid>::addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw)
{
Base::addWellContributionToMassBalanceEq(cq_s, state, xw);
// Add well contributions to polymer mass balance equation
if (has_polymer_) {
const ADB mc = computeMc(state);
const int nc = xw.polymerInflow().size();
const V polyin = Eigen::Map<const V>(xw.polymerInflow().data(), nc);
const int nperf = wells().well_connpos[wells().number_of_wells];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
const V poly_in_perf = subset(polyin, well_cells);
const V poly_mc_perf = subset(mc.value(), well_cells);
const ADB& cq_s_water = cq_s[fluid_.phaseUsage().phase_pos[Water]];
Selector<double> injector_selector(cq_s_water.value());
const V poly_perf = injector_selector.select(poly_in_perf, poly_mc_perf);
const ADB cq_s_poly = cq_s_water * poly_perf;
residual_.material_balance_eq[poly_pos_] -= superset(cq_s_poly, well_cells, nc);
}
}
template <class Grid>
void BlackoilPolymerModel<Grid>::updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (has_polymer_) {
// Extract concentration change.
const int np = fluid_.numPhases();
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const V zero = V::Zero(nc);
const int concentration_start = nc * np;
const V dc = subset(dx, Span(nc, 1, concentration_start));
// Create new dx with the dc part deleted.
V modified_dx = V::Zero(dx.size() - nc);
modified_dx.head(concentration_start) = dx.head(concentration_start);
const int tail_len = dx.size() - concentration_start - nc;
modified_dx.tail(tail_len) = dx.tail(tail_len);
// Call base version.
Base::updateState(modified_dx, reservoir_state, well_state);
{
auto& concentration = reservoir_state.getCellData( reservoir_state.CONCENTRATION );
// Update concentration.
const V c_old = Eigen::Map<const V>(concentration.data(), nc, 1);
const V c = (c_old - dc).max(zero);
std::copy(&c[0], &c[0] + nc, concentration.begin());
}
} else {
// Just forward call to base version.
Base::updateState(dx, reservoir_state, well_state);
}
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& mu ,
const ADB& rho ,
const ADB& phasePressure,
const SolutionState& state)
{
Base::computeMassFlux(actph, transi, kr, mu, rho, phasePressure, state);
// Polymer treatment.
const int canonicalPhaseIdx = canph_[ actph ];
if (canonicalPhaseIdx == Water) {
if (has_polymer_) {
const ADB tr_mult = transMult(state.pressure);
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
const ADB mc = computeMc(state);
const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration, cmax, kr);
const ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value());
// Reduce mobility of water phase by relperm reduction and effective viscosity increase.
rq_[actph].mob = tr_mult * krw_eff * inv_wat_eff_visc;
// Compute polymer mobility.
const ADB inv_poly_eff_visc = polymer_props_ad_.effectiveInvPolymerVisc(state.concentration, mu.value());
rq_[poly_pos_].mob = tr_mult * mc * krw_eff * inv_poly_eff_visc;
rq_[poly_pos_].b = rq_[actph].b;
rq_[poly_pos_].dh = rq_[actph].dh;
UpwindSelector<double> upwind(grid_, ops_, rq_[poly_pos_].dh.value());
// Compute polymer flux.
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * (transi * rq_[poly_pos_].dh);
// Must recompute water flux since we have to use modified mobilities.
rq_[ actph ].mflux = upwind.select(rq_[actph].b * rq_[actph].mob) * (transi * rq_[actph].dh);
// applying the shear-thinning factors
if (has_plyshlog_) {
V shear_mult_faces_v = Eigen::Map<V>(shear_mult_faces_.data(), shear_mult_faces_.size());
ADB shear_mult_faces_adb = ADB::constant(shear_mult_faces_v);
rq_[poly_pos_].mflux = rq_[poly_pos_].mflux / shear_mult_faces_adb;
rq_[actph].mflux = rq_[actph].mflux / shear_mult_faces_adb;
}
}
}
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
// updateWellControls(well_state);
wellModel().updateWellControls(terminal_output_, well_state);
// Create the primary variables.
SolutionState state = variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
computeAccum(state0, 0);
// computeWellConnectionPressures(state0, well_state);
wellModel().computeWellConnectionPressures(state0, well_state);
}
// OPM_AD_DISKVAL(state.pressure);
// OPM_AD_DISKVAL(state.saturation[0]);
// OPM_AD_DISKVAL(state.saturation[1]);
// OPM_AD_DISKVAL(state.saturation[2]);
// OPM_AD_DISKVAL(state.rs);
// OPM_AD_DISKVAL(state.rv);
// OPM_AD_DISKVAL(state.qs);
// OPM_AD_DISKVAL(state.bhp);
// -------- Mass balance equations --------
assembleMassBalanceEq(state);
// -------- Well equations ----------
if ( ! wellsActive() ) {
return;
}
std::vector<ADB> mob_perfcells;
std::vector<ADB> b_perfcells;
wellModel().extractWellPerfProperties(state, rq_, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
}
V aliveWells;
std::vector<ADB> cq_s;
wellModel().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
if (has_plyshlog_) {
std::vector<double> water_vel_wells;
std::vector<double> visc_mult_wells;
const int water_pos = fluid_.phaseUsage().phase_pos[Water];
computeWaterShearVelocityWells(state, well_state, cq_s[water_pos], water_vel_wells, visc_mult_wells);
if ( !polymer_props_ad_.computeShearMultLog(water_vel_wells, visc_mult_wells, shear_mult_wells_) ) {
OPM_THROW(std::runtime_error, " failed in calculating the shear factors for wells ");
}
// applying the shear-thinning to the water phase
V shear_mult_wells_v = Eigen::Map<V>(shear_mult_wells_.data(), shear_mult_wells_.size());
ADB shear_mult_wells_adb = ADB::constant(shear_mult_wells_v);
mob_perfcells[water_pos] = mob_perfcells[water_pos] / shear_mult_wells_adb;
}
wellModel().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
wellModel().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
wellModel().addWellFluxEq(cq_s, state, residual_);
addWellContributionToMassBalanceEq(cq_s, state, well_state);
wellModel().addWellControlEq(state, well_state, aliveWells, residual_);
}
template <class Grid>
ADB
BlackoilPolymerModel<Grid>::computeMc(const SolutionState& state) const
{
return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration);
}
template<class Grid>
void
BlackoilPolymerModel<Grid>::computeWaterShearVelocityFaces(const V& transi, const std::vector<ADB>& kr,
const std::vector<ADB>& phasePressure, const SolutionState& state,
std::vector<double>& water_vel, std::vector<double>& visc_mult)
{
const int phase = fluid_.phaseUsage().phase_pos[Water]; // water position
const int canonicalPhaseIdx = canph_[phase];
const std::vector<PhasePresence> cond = phaseCondition();
const ADB tr_mult = transMult(state.pressure);
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv, cond);
rq_[phase].mob = tr_mult * kr[canonicalPhaseIdx] / mu;
// compute gravity potensial using the face average as in eclipse and MRST
const ADB rho = fluidDensity(canonicalPhaseIdx, rq_[phase].b, state.rs, state.rv);
const ADB rhoavg = ops_.caver * rho;
rq_[ phase ].dh = ops_.ngrad * phasePressure[ canonicalPhaseIdx ] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
if (use_threshold_pressure_) {
applyThresholdPressures(rq_[ phase ].dh);
}
const ADB& b = rq_[ phase ].b;
const ADB& mob = rq_[ phase ].mob;
const ADB& dh = rq_[ phase ].dh;
UpwindSelector<double> upwind(grid_, ops_, dh.value());
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
const ADB mc = computeMc(state);
ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration,
cmax,
kr[canonicalPhaseIdx]);
ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value());
rq_[ phase ].mob = tr_mult * krw_eff * inv_wat_eff_visc;
const V& polymer_conc = state.concentration.value();
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
V visc_mult_faces = upwind.select(visc_mult_cells);
size_t nface = visc_mult_faces.size();
visc_mult.resize(nface);
std::copy(visc_mult_faces.data(), visc_mult_faces.data() + nface, visc_mult.begin());
rq_[ phase ].mflux = (transi * upwind.select(b * mob)) * dh;
const auto& b_faces_adb = upwind.select(b);
std::vector<double> b_faces(b_faces_adb.value().data(), b_faces_adb.value().data() + b_faces_adb.size());
const auto& internal_faces = ops_.internal_faces;
std::vector<double> internal_face_areas;
internal_face_areas.resize(internal_faces.size());
for (int i = 0; i < internal_faces.size(); ++i) {
internal_face_areas[i] = grid_.face_areas[internal_faces[i]];
}
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
const ADB phiavg_adb = ops_.caver * phi;
std::vector<double> phiavg(phiavg_adb.value().data(), phiavg_adb.value().data() + phiavg_adb.size());
water_vel.resize(nface);
std::copy(rq_[0].mflux.value().data(), rq_[0].mflux.value().data() + nface, water_vel.begin());
for (size_t i = 0; i < nface; ++i) {
water_vel[i] = water_vel[i] / (b_faces[i] * phiavg[i] * internal_face_areas[i]);
}
// for SHRATE keyword treatment
if (has_shrate_) {
// get the upwind water saturation
const Opm::PhaseUsage pu = fluid_.phaseUsage();
const ADB& sw = state.saturation[pu.phase_pos[ Water ]];
const ADB& sw_upwind_adb = upwind.select(sw);
std::vector<double> sw_upwind(sw_upwind_adb.value().data(), sw_upwind_adb.value().data() + sw_upwind_adb.size());
// get the absolute permeability for the faces
std::vector<double> perm;
perm.resize(transi.size());
for (int i = 0; i < transi.size(); ++i) {
perm[i] = transi[i] / internal_faces[i];
}
// get the upwind krw_eff
const ADB& krw_adb = upwind.select(krw_eff);
std::vector<double> krw_upwind(krw_adb.value().data(), krw_adb.value().data() + krw_adb.size());
const double& shrate_const = polymer_props_ad_.shrate();
const double epsilon = std::numeric_limits<double>::epsilon();
// std::cout << "espilon is " << epsilon << std::endl;
// std::cin.ignore();
for (size_t i = 0; i < water_vel.size(); ++i) {
// assuming only when upwinding water saturation is not zero
// there will be non-zero water velocity
if (std::abs(water_vel[i]) < epsilon) {
continue;
}
water_vel[i] *= shrate_const * std::sqrt(phiavg[i] / (perm[i] * sw_upwind[i] * krw_upwind[i]));
}
}
}
template<class Grid>
void
BlackoilPolymerModel<Grid>::computeWaterShearVelocityWells(const SolutionState& state, WellState& xw, const ADB& cq_sw,
std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells)
{
if( ! wellsActive() ) return ;
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
water_vel_wells.resize(cq_sw.size());
std::copy(cq_sw.value().data(), cq_sw.value().data() + cq_sw.size(), water_vel_wells.begin());
const V& polymer_conc = state.concentration.value();
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
V visc_mult_wells_v = subset(visc_mult_cells, well_cells);
visc_mult_wells.resize(visc_mult_wells_v.size());
std::copy(visc_mult_wells_v.data(), visc_mult_wells_v.data() + visc_mult_wells_v.size(), visc_mult_wells.begin());
const int water_pos = fluid_.phaseUsage().phase_pos[Water];
ADB b_perfcells = subset(rq_[water_pos].b, well_cells);
const ADB& p_perfcells = subset(state.pressure, well_cells);
const V& cdp = wellModel().wellPerforationPressureDiffs();
const ADB perfpressure = (wellModel().wellOps().w2p * state.bhp) + cdp;
// Pressure drawdown (also used to determine direction of flow)
const ADB drawdown = p_perfcells - perfpressure;
// selects injection perforations
V selectInjectingPerforations = V::Zero(nperf);
for (int c = 0; c < nperf; ++c) {
if (drawdown.value()[c] < 0) {
selectInjectingPerforations[c] = 1;
}
}
// for the injection wells
for (size_t i = 0; i < well_cells.size(); ++i) {
if (xw.polymerInflow()[well_cells[i]] == 0. && selectInjectingPerforations[i] == 1) { // maybe comparison with epsilon threshold
visc_mult_wells[i] = 1.;
}
}
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
const ADB phi_wells_adb = subset(phi, well_cells);
std::vector<double> phi_wells(phi_wells_adb.value().data(), phi_wells_adb.value().data() + phi_wells_adb.size());
std::vector<double> b_wells(b_perfcells.value().data(), b_perfcells.value().data() + b_perfcells.size());
for (size_t i = 0; i < water_vel_wells.size(); ++i) {
water_vel_wells[i] = b_wells[i] * water_vel_wells[i] / (phi_wells[i] * 2. * M_PI * wells_rep_radius_[i] * wells_perf_length_[i]);
// TODO: CHECK to make sure this formulation is corectly used. Why muliplied by bW.
// Although this formulation works perfectly with the tests compared with other formulations
}
// for SHRATE treatment
if (has_shrate_) {
const double& shrate_const = polymer_props_ad_.shrate();
for (size_t i = 0; i < water_vel_wells.size(); ++i) {
water_vel_wells[i] = shrate_const * water_vel_wells[i] / wells_bore_diameter_[i];
}
}
return;
}
} // namespace Opm
#endif // OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED