mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-05 05:54:58 -06:00
643 lines
22 KiB
C++
643 lines
22 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::CuvetteProblem
|
|
*/
|
|
#ifndef EWOMS_CUVETTE_PROBLEM_HH
|
|
#define EWOMS_CUVETTE_PROBLEM_HH
|
|
|
|
#include <opm/models/pvs/pvsproperties.hh>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
|
|
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
|
|
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class CuvetteProblem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
|
|
// create a new type tag for the cuvette steam injection problem
|
|
namespace TTag {
|
|
struct CuvetteBaseProblem {};
|
|
}
|
|
|
|
// Set the grid type
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::CuvetteBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::CuvetteBaseProblem> { using type = Opm::CuvetteProblem<TypeTag>; };
|
|
|
|
// Set the fluid system
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::CuvetteBaseProblem>
|
|
{ using type = Opm::H2OAirMesityleneFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::CuvetteBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
using Traits = Opm::ThreePhaseMaterialTraits<
|
|
Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
public:
|
|
using type = Opm::ThreePhaseParkerVanGenuchten<Traits>;
|
|
};
|
|
|
|
// set the energy storage law for the solid phase
|
|
template<class TypeTag>
|
|
struct SolidEnergyLaw<TypeTag, TTag::CuvetteBaseProblem>
|
|
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
// Set the thermal conduction law
|
|
template<class TypeTag>
|
|
struct ThermalConductionLaw<TypeTag, TTag::CuvetteBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Non-isothermal three-phase gas injection problem where a hot gas
|
|
* is injected into a unsaturated porous medium with a residually
|
|
* trapped NAPL contamination.
|
|
*
|
|
* The domain is a quasi-two-dimensional container (cuvette). Its
|
|
* dimensions are 1.5 m x 0.74 m. The top and bottom boundaries are
|
|
* closed, the right boundary is a free-flow boundary allowing fluids
|
|
* to escape. From the left, an injection of a hot water-air mixture
|
|
* is injected. The set-up is aimed at remediating an initial NAPL
|
|
* (Non-Aquoeus Phase Liquid) contamination in the domain. The
|
|
* contamination is initially placed partly into the ambient coarse
|
|
* sand and partly into a fine sand lens.
|
|
*
|
|
* This simulation can be varied through assigning different boundary conditions
|
|
* at the left boundary as described in Class (2001):
|
|
* Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in
|
|
* NAPL-kontaminierten poroesen Medien, Dissertation, Eigenverlag des Instituts
|
|
* fuer Wasserbau
|
|
*
|
|
* To see the basic effect and the differences to scenarios with pure
|
|
* steam or pure air injection, it is sufficient to simulate this
|
|
* problem to about 2-3 hours simulation time. Complete remediation
|
|
* of the domain requires much longer (about 10 days simulated time).
|
|
*/
|
|
template <class TypeTag>
|
|
class CuvetteProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
|
|
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
// copy some indices for convenience
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { naplPhaseIdx = FluidSystem::naplPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { H2OIdx = FluidSystem::H2OIdx };
|
|
enum { airIdx = FluidSystem::airIdx };
|
|
enum { NAPLIdx = FluidSystem::NAPLIdx };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
|
|
// Grid and world dimension
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
CuvetteProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
, eps_(1e-6)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
if (Opm::Valgrind::IsRunning())
|
|
FluidSystem::init(/*minT=*/283.15, /*maxT=*/500.0, /*nT=*/20,
|
|
/*minp=*/0.8e5, /*maxp=*/2e5, /*np=*/10);
|
|
else
|
|
FluidSystem::init(/*minT=*/283.15, /*maxT=*/500.0, /*nT=*/200,
|
|
/*minp=*/0.8e5, /*maxp=*/2e5, /*np=*/100);
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(6.28e-12);
|
|
coarseK_ = this->toDimMatrix_(9.14e-10);
|
|
|
|
// porosities
|
|
finePorosity_ = 0.42;
|
|
coarsePorosity_ = 0.42;
|
|
|
|
// parameters for the capillary pressure law
|
|
#if 1
|
|
// three-phase Parker -- van Genuchten law
|
|
fineMaterialParams_.setVgAlpha(0.0005);
|
|
coarseMaterialParams_.setVgAlpha(0.005);
|
|
fineMaterialParams_.setVgN(4.0);
|
|
coarseMaterialParams_.setVgN(4.0);
|
|
|
|
coarseMaterialParams_.setkrRegardsSnr(true);
|
|
fineMaterialParams_.setkrRegardsSnr(true);
|
|
|
|
// residual saturations
|
|
fineMaterialParams_.setSwr(0.1201);
|
|
fineMaterialParams_.setSwrx(0.1201);
|
|
fineMaterialParams_.setSnr(0.0701);
|
|
fineMaterialParams_.setSgr(0.0101);
|
|
coarseMaterialParams_.setSwr(0.1201);
|
|
coarseMaterialParams_.setSwrx(0.1201);
|
|
coarseMaterialParams_.setSnr(0.0701);
|
|
coarseMaterialParams_.setSgr(0.0101);
|
|
#else
|
|
// linear material law
|
|
fineMaterialParams_.setPcMinSat(gasPhaseIdx, 0);
|
|
fineMaterialParams_.setPcMaxSat(gasPhaseIdx, 0);
|
|
fineMaterialParams_.setPcMinSat(naplPhaseIdx, 0);
|
|
fineMaterialParams_.setPcMaxSat(naplPhaseIdx, -1000);
|
|
fineMaterialParams_.setPcMinSat(waterPhaseIdx, 0);
|
|
fineMaterialParams_.setPcMaxSat(waterPhaseIdx, -10000);
|
|
|
|
coarseMaterialParams_.setPcMinSat(gasPhaseIdx, 0);
|
|
coarseMaterialParams_.setPcMaxSat(gasPhaseIdx, 0);
|
|
coarseMaterialParams_.setPcMinSat(naplPhaseIdx, 0);
|
|
coarseMaterialParams_.setPcMaxSat(naplPhaseIdx, -100);
|
|
coarseMaterialParams_.setPcMinSat(waterPhaseIdx, 0);
|
|
coarseMaterialParams_.setPcMaxSat(waterPhaseIdx, -1000);
|
|
|
|
// residual saturations
|
|
fineMaterialParams_.setResidSat(waterPhaseIdx, 0.1201);
|
|
fineMaterialParams_.setResidSat(naplPhaseIdx, 0.0701);
|
|
fineMaterialParams_.setResidSat(gasPhaseIdx, 0.0101);
|
|
|
|
coarseMaterialParams_.setResidSat(waterPhaseIdx, 0.1201);
|
|
coarseMaterialParams_.setResidSat(naplPhaseIdx, 0.0701);
|
|
coarseMaterialParams_.setResidSat(gasPhaseIdx, 0.0101);
|
|
#endif
|
|
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
// initialize parameters for the thermal conduction law
|
|
computeThermalCondParams_(thermalCondParams_, finePorosity_);
|
|
|
|
// assume constant volumetric heat capacity and granite
|
|
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700.0); // density of granite [kg/m^3]
|
|
solidEnergyLawParams_.finalize();
|
|
|
|
initInjectFluidState_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::SetDefault<Parameters::GridFile>("./data/cuvette_11x4.dgf");
|
|
Parameters::SetDefault<Parameters::EndTime<Scalar>>(100.0);
|
|
Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(1.0);
|
|
Parameters::SetDefault<Parameters::MaxTimeStepSize<Scalar>>(600.0);
|
|
Parameters::SetDefault<Parameters::EnableGravity>(true);
|
|
}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::shouldWriteRestartFile
|
|
*
|
|
* This problem writes a restart file after every time step.
|
|
*/
|
|
bool shouldWriteRestartFile() const
|
|
{ return true; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return std::string("cuvette_") + Model::name(); }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return 293.15; /* [K] */ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
else
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineMaterialParams_;
|
|
else
|
|
return coarseMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
|
|
*/
|
|
template <class Context>
|
|
const ThermalConductionLawParams &
|
|
thermalConductionParams(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return thermalCondParams_; }
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onRightBoundary_(pos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
values.setNoFlow();
|
|
}
|
|
else if (onLeftBoundary_(pos)) {
|
|
// injection
|
|
RateVector molarRate;
|
|
|
|
// inject with the same composition as the gas phase of
|
|
// the injection fluid state
|
|
Scalar molarInjectionRate = 0.3435; // [mol/(m^2 s)]
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
molarRate[conti0EqIdx + compIdx] =
|
|
-molarInjectionRate
|
|
* injectFluidState_.moleFraction(gasPhaseIdx, compIdx);
|
|
|
|
// calculate the total mass injection rate [kg / (m^2 s)
|
|
Scalar massInjectionRate =
|
|
molarInjectionRate
|
|
* injectFluidState_.averageMolarMass(gasPhaseIdx);
|
|
|
|
// set the boundary rate vector [J / (m^2 s)]
|
|
values.setMolarRate(molarRate);
|
|
values.setEnthalpyRate(-injectFluidState_.enthalpy(gasPhaseIdx) * massInjectionRate);
|
|
}
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/false);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool isContaminated_(const GlobalPosition& pos) const
|
|
{
|
|
return (0.20 <= pos[0]) && (pos[0] <= 0.80) && (0.4 <= pos[1])
|
|
&& (pos[1] <= 0.65);
|
|
}
|
|
|
|
bool isFineMaterial_(const GlobalPosition& pos) const
|
|
{
|
|
if (0.13 <= pos[0] && 1.20 >= pos[0] && 0.32 <= pos[1] && pos[1] <= 0.57)
|
|
return true;
|
|
else if (pos[1] <= 0.15 && 1.20 <= pos[0])
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
template <class FluidState, class Context>
|
|
void initialFluidState_(FluidState& fs, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
fs.setTemperature(293.0 /*[K]*/);
|
|
|
|
Scalar pw = 1e5;
|
|
|
|
if (isContaminated_(pos)) {
|
|
fs.setSaturation(waterPhaseIdx, 0.12);
|
|
fs.setSaturation(naplPhaseIdx, 0.07);
|
|
fs.setSaturation(gasPhaseIdx, 1 - 0.12 - 0.07);
|
|
|
|
// set the capillary pressures
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
Scalar pc[numPhases];
|
|
MaterialLaw::capillaryPressures(pc, matParams, fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fs.setPressure(phaseIdx, pw + (pc[phaseIdx] - pc[waterPhaseIdx]));
|
|
|
|
// compute the phase compositions
|
|
using MMPC = Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem>;
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
MMPC::solve(fs, paramCache, /*setViscosity=*/true, /*setEnthalpy=*/true);
|
|
}
|
|
else {
|
|
fs.setSaturation(waterPhaseIdx, 0.12);
|
|
fs.setSaturation(gasPhaseIdx, 1 - fs.saturation(waterPhaseIdx));
|
|
fs.setSaturation(naplPhaseIdx, 0);
|
|
|
|
// set the capillary pressures
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
Scalar pc[numPhases];
|
|
MaterialLaw::capillaryPressures(pc, matParams, fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fs.setPressure(phaseIdx, pw + (pc[phaseIdx] - pc[waterPhaseIdx]));
|
|
|
|
// compute the phase compositions
|
|
using MMPC = Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem>;
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
MMPC::solve(fs, paramCache, /*setViscosity=*/true, /*setEnthalpy=*/true);
|
|
|
|
// set the contaminant mole fractions to zero. this is a little bit hacky...
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fs.setMoleFraction(phaseIdx, NAPLIdx, 0.0);
|
|
|
|
if (phaseIdx == naplPhaseIdx)
|
|
continue;
|
|
|
|
Scalar sumx = 0;
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
sumx += fs.moleFraction(phaseIdx, compIdx);
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
fs.setMoleFraction(phaseIdx, compIdx,
|
|
fs.moleFraction(phaseIdx, compIdx) / sumx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
|
|
{
|
|
Scalar lambdaGranite = 2.8; // [W / (K m)]
|
|
|
|
// create a Fluid state which has all phases present
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setTemperature(293.15);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fs.setPressure(phaseIdx, 1.0135e5);
|
|
}
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar lambdaSaturated;
|
|
if (FluidSystem::isLiquid(phaseIdx)) {
|
|
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
|
|
lambdaSaturated =
|
|
std::pow(lambdaGranite, (1 - poro))
|
|
+
|
|
std::pow(lambdaFluid, poro);
|
|
}
|
|
else
|
|
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
|
|
|
|
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
|
|
if (!FluidSystem::isLiquid(phaseIdx))
|
|
params.setVacuumLambda(lambdaSaturated);
|
|
}
|
|
}
|
|
|
|
void initInjectFluidState_()
|
|
{
|
|
injectFluidState_.setTemperature(383.0); // [K]
|
|
injectFluidState_.setPressure(gasPhaseIdx, 1e5); // [Pa]
|
|
injectFluidState_.setSaturation(gasPhaseIdx, 1.0); // [-]
|
|
|
|
Scalar xgH2O = 0.417;
|
|
injectFluidState_.setMoleFraction(gasPhaseIdx, H2OIdx, xgH2O); // [-]
|
|
injectFluidState_.setMoleFraction(gasPhaseIdx, airIdx, 1 - xgH2O); // [-]
|
|
injectFluidState_.setMoleFraction(gasPhaseIdx, NAPLIdx, 0.0); // [-]
|
|
|
|
// set the specific enthalpy of the gas phase
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updatePhase(injectFluidState_, gasPhaseIdx);
|
|
|
|
Scalar h = FluidSystem::enthalpy(injectFluidState_, paramCache, gasPhaseIdx);
|
|
injectFluidState_.setEnthalpy(gasPhaseIdx, h);
|
|
}
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
|
|
Scalar finePorosity_;
|
|
Scalar coarsePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
|
|
ThermalConductionLawParams thermalCondParams_;
|
|
SolidEnergyLawParams solidEnergyLawParams_;
|
|
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> injectFluidState_;
|
|
|
|
const Scalar eps_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|