mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-05 05:54:58 -06:00
563 lines
18 KiB
C++
563 lines
18 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::FingerProblem
|
|
*/
|
|
#ifndef EWOMS_FINGER_PROBLEM_HH
|
|
#define EWOMS_FINGER_PROBLEM_HH
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
#include <dune/alugrid/grid.hh>
|
|
#endif
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <dune/grid/utility/persistentcontainer.hh>
|
|
|
|
#include <opm/material/components/Air.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
|
|
#include <opm/models/common/multiphasebaseparameters.hh>
|
|
|
|
#include <opm/models/discretization/common/fvbasefdlocallinearizer.hh>
|
|
#include <opm/models/discretization/common/restrictprolong.hh>
|
|
|
|
#include <opm/models/immiscible/immiscibleproperties.hh>
|
|
|
|
#include <opm/models/io/structuredgridvanguard.hh>
|
|
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class FingerProblem;
|
|
|
|
} // namespace Opm
|
|
|
|
namespace Opm::Properties {
|
|
|
|
// Create new type tags
|
|
namespace TTag {
|
|
struct FingerBaseProblem { using InheritsFrom = std::tuple<StructuredGridVanguard>; };
|
|
} // end namespace TTag
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
// use dune-alugrid if available
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::FingerBaseProblem>
|
|
{ using type = Dune::ALUGrid</*dim=*/2,
|
|
/*dimWorld=*/2,
|
|
Dune::cube,
|
|
Dune::nonconforming>; };
|
|
#endif
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::FingerBaseProblem> { using type = Opm::FingerProblem<TypeTag>; };
|
|
|
|
// Set the wetting phase
|
|
template<class TypeTag>
|
|
struct WettingPhase<TypeTag, TTag::FingerBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
using type = Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> >;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
template<class TypeTag>
|
|
struct NonwettingPhase<TypeTag, TTag::FingerBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
using type = Opm::GasPhase<Scalar, Opm::Air<Scalar> >;
|
|
};
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::FingerBaseProblem>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>;
|
|
|
|
// use the parker-lenhard hysteresis law
|
|
using ParkerLenhard = Opm::ParkerLenhard<Traits>;
|
|
using type = ParkerLenhard;
|
|
};
|
|
|
|
// Enable constraints
|
|
template<class TypeTag>
|
|
struct EnableConstraints<TypeTag, TTag::FingerBaseProblem> { static constexpr int value = true; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm::Parameters {
|
|
|
|
template<class Scalar>
|
|
struct InitialWaterSaturation { static constexpr Scalar value = 0.01; };
|
|
|
|
} // namespace Opm::Parameters
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Two-phase problem featuring some gravity-driven saturation
|
|
* fingers.
|
|
*
|
|
* The domain of this problem is sized 10cm times 1m and is initially
|
|
* dry. Water is then injected at three locations on the top of the
|
|
* domain which leads to gravity fingering. The boundary conditions
|
|
* used are no-flow for the left and right and top of the domain and
|
|
* free-flow at the bottom. This problem uses the Parker-Lenhard
|
|
* hystersis model which might lead to non-monotonic saturation in the
|
|
* fingers if the right material parameters is chosen and the spatial
|
|
* discretization is fine enough.
|
|
*/
|
|
template <class TypeTag>
|
|
class FingerProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
//!\cond SKIP_THIS
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using WettingPhase = GetPropType<TypeTag, Properties::WettingPhase>;
|
|
using NonwettingPhase = GetPropType<TypeTag, Properties::NonwettingPhase>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
|
|
enum {
|
|
// number of phases
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// phase indices
|
|
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
|
|
|
|
// equation indices
|
|
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Stencil = GetPropType<TypeTag, Properties::Stencil> ;
|
|
enum { codim = Stencil::Entity::codimension };
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
|
|
using ParkerLenhard = typename GetProp<TypeTag, Properties::MaterialLaw>::ParkerLenhard;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
using Grid = typename GridView :: Grid;
|
|
|
|
using MaterialLawParamsContainer = Dune::PersistentContainer< Grid, std::shared_ptr< MaterialLawParams > > ;
|
|
//!\endcond
|
|
|
|
public:
|
|
using RestrictProlongOperator = CopyRestrictProlong< Grid, MaterialLawParamsContainer >;
|
|
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
FingerProblem(Simulator& simulator)
|
|
: ParentType(simulator),
|
|
materialParams_( simulator.vanguard().grid(), codim )
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \brief \copydoc FvBaseProblem::restrictProlongOperator
|
|
*/
|
|
RestrictProlongOperator restrictProlongOperator()
|
|
{
|
|
return RestrictProlongOperator( materialParams_ );
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return
|
|
std::string("finger") +
|
|
"_" + Model::name() +
|
|
"_" + Model::discretizationName() +
|
|
(this->model().enableGridAdaptation()?"_adaptive":"");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::Register<Parameters::InitialWaterSaturation<Scalar>>
|
|
("The initial saturation in the domain [] of the wetting phase");
|
|
|
|
Parameters::SetDefault<Parameters::CellsX>(20);
|
|
Parameters::SetDefault<Parameters::DomainSizeX<Scalar>>(0.1);
|
|
|
|
if constexpr (dim > 1) {
|
|
Parameters::SetDefault<Parameters::CellsY>(70);
|
|
Parameters::SetDefault<Parameters::DomainSizeY<Scalar>>(0.3);
|
|
}
|
|
if constexpr (dim == 3) {
|
|
Parameters::SetDefault<Parameters::CellsZ>(1);
|
|
Parameters::SetDefault<Parameters::DomainSizeZ<Scalar>>(0.1);
|
|
}
|
|
|
|
// Use forward differences
|
|
Parameters::SetDefault<Parameters::NumericDifferenceMethod>(+1);
|
|
|
|
Parameters::SetDefault<Parameters::EndTime<Scalar>>(215);
|
|
Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(10);
|
|
Parameters::SetDefault<Parameters::EnableGravity>(true);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit()
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
|
|
FluidSystem::init();
|
|
|
|
// parameters for the Van Genuchten law of the main imbibition
|
|
// and the main drainage curves.
|
|
micParams_.setVgAlpha(0.0037);
|
|
micParams_.setVgN(4.7);
|
|
micParams_.finalize();
|
|
|
|
mdcParams_.setVgAlpha(0.0037);
|
|
mdcParams_.setVgN(4.7);
|
|
mdcParams_.finalize();
|
|
|
|
// initialize the material parameter objects of the individual
|
|
// finite volumes, resize will resize the container to the number of elements
|
|
materialParams_.resize();
|
|
|
|
for (auto it = materialParams_.begin(),
|
|
end = materialParams_.end(); it != end; ++it ) {
|
|
std::shared_ptr< MaterialLawParams >& materialParams = *it ;
|
|
if( ! materialParams )
|
|
{
|
|
materialParams.reset( new MaterialLawParams() );
|
|
materialParams->setMicParams(&micParams_);
|
|
materialParams->setMdcParams(&mdcParams_);
|
|
materialParams->setSwr(0.0);
|
|
materialParams->setSnr(0.1);
|
|
materialParams->finalize();
|
|
ParkerLenhard::reset(*materialParams);
|
|
}
|
|
}
|
|
|
|
K_ = this->toDimMatrix_(4.6e-10);
|
|
|
|
setupInitialFluidState_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// update the history of the hysteresis law
|
|
ElementContext elemCtx(this->simulator());
|
|
|
|
for (const auto& elem : elements(this->gridView())) {
|
|
elemCtx.updateAll(elem);
|
|
size_t numDofs = elemCtx.numDof(/*timeIdx=*/0);
|
|
for (unsigned scvIdx = 0; scvIdx < numDofs; ++scvIdx)
|
|
{
|
|
MaterialLawParams& materialParam = materialLawParams( elemCtx, scvIdx, /*timeIdx=*/0 );
|
|
const auto& fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
|
|
ParkerLenhard::update(materialParam, fs);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return K_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx)
|
|
{
|
|
const auto& entity = context.stencil(timeIdx).entity(spaceIdx);
|
|
assert(materialParams_[entity]);
|
|
return *materialParams_[entity];
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams& materialLawParams(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
|
|
assert(materialParams_[entity]);
|
|
return *materialParams_[entity];
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos) || onLowerBoundary_(pos))
|
|
values.setNoFlow();
|
|
else {
|
|
assert(onUpperBoundary_(pos));
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
|
|
}
|
|
|
|
// override the value for the liquid phase by forced
|
|
// imbibition of water on inlet boundary segments
|
|
if (onInlet_(pos)) {
|
|
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values, const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{
|
|
// assign the primary variables
|
|
values.assignNaive(initialFluidState_);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::constraints
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints& constraints, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
|
|
constraints.setActive(true);
|
|
constraints.assignNaive(initialFluidState_);
|
|
}
|
|
else if (onLowerBoundary_(pos)) {
|
|
constraints.setActive(true);
|
|
constraints.assignNaive(initialFluidState_);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate, const Context& /*context*/,
|
|
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
|
|
if (!onUpperBoundary_(pos))
|
|
return false;
|
|
|
|
Scalar xInject[] = { 0.25, 0.75 };
|
|
Scalar injectLen[] = { 0.1, 0.1 };
|
|
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
|
|
if (xInject[i] - injectLen[i] / 2 < lambda
|
|
&& lambda < xInject[i] + injectLen[i] / 2)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setupInitialFluidState_()
|
|
{
|
|
auto& fs = initialFluidState_;
|
|
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
|
|
|
|
Scalar Sw = Parameters::Get<Parameters::InitialWaterSaturation<Scalar>>();
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
|
|
fs.setTemperature(temperature_);
|
|
|
|
// set the absolute pressures
|
|
Scalar pn = 1e5;
|
|
fs.setPressure(nonWettingPhaseIdx, pn);
|
|
fs.setPressure(wettingPhaseIdx, pn);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
|
|
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
|
|
}
|
|
|
|
}
|
|
|
|
DimMatrix K_;
|
|
|
|
typename MaterialLawParams::VanGenuchtenParams micParams_;
|
|
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
|
|
|
|
MaterialLawParamsContainer materialParams_;
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|