opm-simulators/opm/autodiff/MultisegmentWell.hpp
2017-10-12 13:37:05 +02:00

376 lines
16 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#include <opm/autodiff/WellInterface.hpp>
#include <dune/istl/solvers.hh>
namespace Opm
{
template<typename TypeTag>
class MultisegmentWell: public WellInterface<TypeTag>
{
public:
typedef WellInterface<TypeTag> Base;
// TODO: the WellState does not have any information related to segments
using typename Base::WellState;
using typename Base::Simulator;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::ModelParameters;
using typename Base::MaterialLaw;
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
// TODO: should I begin with the old primary variable or the new fraction based variable systems?
// Let us begin with the new one
// TODO: we need to have order for the primary variables and also the order for the well equations.
// sometimes, they are similar, while sometimes, they can have very different forms.
enum WellVariablePositions {
GTotal = 0,
WFrac = 1,
GFrac = 2,
SPres = 3
};
/// the number of well equations // TODO: it should have a more general strategy for it
static const int numWellEq = 4;
using typename Base::Scalar;
using typename Base::ConvergenceReport;
/// the number of reservior equations
using Base::numEq;
/// the matrix and vector types for the reservoir
using typename Base::Mat;
using typename Base::BVector;
using typename Base::Eval;
// sparsity pattern for the matrices
// [A C^T [x = [ res
// B D ] x_well] res_well]
// the vector type for the res_well and x_well
typedef Dune::FieldVector<Scalar, numWellEq> VectorBlockWellType;
typedef Dune::BlockVector<VectorBlockWellType> BVectorWell;
// the matrix type for the diagonal matrix D
typedef Dune::FieldMatrix<Scalar, numWellEq, numWellEq > DiagMatrixBlockWellType;
typedef Dune::BCRSMatrix <DiagMatrixBlockWellType> DiagMatWell;
// the matrix type for the non-diagonal matrix B and C^T
typedef Dune::FieldMatrix<Scalar, numWellEq, numEq> OffDiagMatrixBlockWellType;
typedef Dune::BCRSMatrix<OffDiagMatrixBlockWellType> OffDiagMatWell;
// TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell
// EvalR (Eval), EvalW, EvalRW
// TODO: for now, we only use one type to save some implementation efforts, while improve later.
typedef DenseAd::Evaluation<double, /*size=*/numEq + numWellEq> EvalWell;
MultisegmentWell(const Well* well, const int time_step, const Wells* wells);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<bool>* active_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells);
virtual void initPrimaryVariablesEvaluation() const;
virtual void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells);
/// updating the well state based the control mode specified with current
// TODO: later will check wheter we need current
virtual void updateWellStateWithTarget(const int current,
WellState& well_state) const;
/// check whether the well equations get converged for this well
virtual ConvergenceReport getWellConvergence(Simulator& ebosSimulator,
const std::vector<double>& B_avg,
const ModelParameters& param) const;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const;
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param,
WellState& well_state) const;
/// computing the well potentials for group control
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials);
virtual void updatePrimaryVariables(const WellState& well_state) const;
virtual void solveEqAndUpdateWellState(const ModelParameters& param,
WellState& well_state); // const?
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state); // should be const?
/// number of segments for this well
/// int number_of_segments_;
int numberOfSegments() const;
int numberOfPerforations() const;
protected:
int number_segments_;
// components of the pressure drop to be included
WellSegment::CompPressureDropEnum compPressureDrop() const;
// multi-phase flow model
WellSegment::MultiPhaseModelEnum multiphaseModel() const;
// get the SegmentSet from the well_ecl_
const SegmentSet& segmentSet() const;
// protected member variables from the Base class
using Base::well_ecl_;
using Base::number_of_perforations_; // TODO: can use well_ecl_?
using Base::current_step_;
using Base::index_of_well_;
using Base::number_of_phases_;
using Base::well_cells_; // TODO: are the perforation orders same with StandardWell or Wells?
using Base::well_index_;
using Base::well_type_;
using Base::first_perf_;
using Base::saturation_table_number_;
using Base::well_efficiency_factor_;
using Base::gravity_;
using Base::well_controls_;
// protected functions from the Base class
using Base::active;
using Base::phaseUsage;
using Base::name;
using Base::numComponents;
using Base::flowToEbosPvIdx;
using Base::flowPhaseToEbosPhaseIdx;
using Base::flowPhaseToEbosCompIdx;
using Base::getAllowCrossFlow;
// TODO: trying to use the information from the Well opm-parser as much
// as possible, it will possibly be re-implemented later for efficiency reason.
// indices of the gird blocks that segments locate at.
// TODO: the grid cell related to a segment should be calculated based on the location
// of the segment node.
// As the current temporary solution, the grid cell related to a segment determined by the
// first perforation cell related to the segment.
// when no perforation is related to the segment, use it outlet segment's cell.
// TODO: it can be a source of error
std::vector<int> segment_cell_;
// the completions that is related to each segment
// the completions's ids are their location in the vector well_index_, well_cell_
// This is also assuming the order of the completions in Well is the same with
// the order of the completions in wells.
// it is for convinience reason. we can just calcuate the inforation for segment once then using it for all the perofrations
// belonging to this segment
std::vector<std::vector<int> > segment_perforations_;
// the inlet segments for each segment. It is for convinience and efficiency reason
// the original segment structure is defined as a gathering tree structure based on outlet_segment
// the reason that we can not use the old way of WellOps, which is based on the Eigen matrix and vector.
// TODO: can we use DUNE FieldMatrix and FieldVector.
std::vector<std::vector<int> > segment_inlets_;
// Things are easy to get from SegmentSet
// segment_volume_, segment_cross_area_, segment_length_(total length), segment_depth_
// segment_internal_diameter_, segment_roughness_
// outlet_segment_., in the outlet_segment, we store the ID of the segment, we will need to use numberToLocation to get
// their location in the segmentSet
// segment number is an ID of the segment, it is specified in the deck
// get the loation of the segment with a segment number in the segmentSet
int numberToLocation(const int segment_number) const;
// TODO, the following should go to a class for computing purpose
// two off-diagonal matrices
mutable OffDiagMatWell duneB_;
mutable OffDiagMatWell duneC_;
// diagonal matrix for the well
// TODO: if we decided not to invert it, we better change the name of it
mutable DiagMatWell duneD_;
// several vector used in the matrix calculation
mutable BVectorWell Bx_;
mutable BVector scaleAddRes_;
// residuals of the well equations
mutable BVectorWell resWell_;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
// TODO: should we introduce a data structure for segment to simplify this?
// or std::vector<std::vector<double> >
mutable std::vector<std::array<double, numWellEq> > primary_variables_;
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
mutable std::vector<std::array<EvalWell, numWellEq> > primary_variables_evaluation_;
// pressure correction due to the different depth of the perforation and
// center depth of the grid block
std::vector<double> perforation_cell_pressure_diffs_;
// depth difference between the segment and the peforation
// or in another way, the depth difference between the perforation and
// the segment the perforation belongs to
std::vector<double> segment_perforation_depth_diffs_;
// the intial component compistion of segments
std::vector<std::vector<double> > segment_comp_initial_;
// the densities of segment fluids
// TODO: if it turned out it is only used to calculate the pressure difference,
// we should not have this member variable
std::vector<EvalWell> segment_densities_;
std::vector<double> segment_depth_diffs_;
void initMatrixAndVectors(const int num_cells) const;
// protected functions
// EvalWell getBhp(); this one should be something similar to getSegmentPressure();
// EvalWell getQs(); this one should be something similar to getSegmentRates()
// EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed.
// bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
// updating the well_state based on well solution dwells
void updateWellState(const BVectorWell& dwells,
const BlackoilModelParameters& param,
WellState& well_state) const;
// computing the accumulation term for later use in well mass equations
void computeInitialComposition();
// compute the pressure difference between the perforation and cell center
void computePerfCellPressDiffs(const Simulator& ebosSimulator);
// fraction value of the primary variables
// should we just use member variables to store them instead of calculating them again and again
EvalWell volumeFraction(const int seg, const int comp_idx) const;
// F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p
EvalWell volumeFractionScaled(const int seg, const int comp_idx) const;
// basically Q_p / \sigma_p Q_p
EvalWell surfaceVolumeFraction(const int seg, const int comp_idx) const;
void computePerfRate(const IntensiveQuantities& int_quants,
const std::vector<EvalWell>& mob_perfcells,
const int seg,
const double well_index,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector<EvalWell>& cq_s) const;
// convert a Eval from reservoir to contain the derivative related to wells
EvalWell extendEval(const Eval& in) const;
// compute the densities of the mixture in the segments
// TODO: probably other fluid properties also.
// They will be treated implicitly, so they need to be of Evaluation type
void computeSegmentFluidProperties(const Simulator& ebosSimulator);
EvalWell getSegmentPressure(const int seg) const;
EvalWell getSegmentRate(const int seg, const int comp_idx) const;
EvalWell getSegmentGTotal(const int seg) const;
// get the mobility for specific perforation
void getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob) const;
void assembleControlEq() const;
void assemblePressureEq(const int seg) const;
// hytrostatic pressure loss
EvalWell getHydroPressureLoss(const int seg) const;
// handling the overshooting and undershooting of the fractions
void processFractions(const int seg) const;
void updateWellStateFromPrimaryVariables(WellState& well_state) const;
};
// obtain y = D^-1 * x
template<typename MatrixType, typename VectorType>
VectorType
invDX(MatrixType D, VectorType x)
{
// TODO: checking the problem related to use reference parameter
// TODO: store some of the following information to avoid to call it again and again for
// efficiency improvement.
// Bassically, only the solve / apply step is different.
VectorType y(x.size());
y = 0.;
Dune::MatrixAdapter<MatrixType, VectorType, VectorType> linearOperator(D);
// Sequential incomplete LU decomposition as the preconditioner
Dune::SeqILU0<MatrixType, VectorType, VectorType> preconditioner(D, 1.0);
// Preconditioned BICGSTAB solver
Dune::BiCGSTABSolver<VectorType> linsolver(linearOperator,
preconditioner,
1.e-6, // desired residual reduction factor
50, // maximum number of iterations
0); // verbosity of the solver
// Object storing some statistics about the solving process
Dune::InverseOperatorResult statistics ;
// Solve
linsolver.apply(y, x, statistics );
return y;
}
}
#include "MultisegmentWell_impl.hpp"
#endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED