mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-27 09:40:59 -06:00
215 lines
8.0 KiB
C++
215 lines
8.0 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::ImmisciblePrimaryVariables
|
|
*/
|
|
#ifndef EWOMS_IMMISCIBLE_PRIMARY_VARIABLES_HH
|
|
#define EWOMS_IMMISCIBLE_PRIMARY_VARIABLES_HH
|
|
|
|
#include "immiscibleproperties.hh"
|
|
|
|
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
|
|
#include <opm/models/common/energymodule.hh>
|
|
|
|
#include <opm/material/constraintsolvers/ImmiscibleFlash.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup ImmiscibleModel
|
|
*
|
|
* \brief Represents the primary variables used by the immiscible
|
|
* multi-phase, model.
|
|
*
|
|
* This class is basically a Dune::FieldVector which can retrieve its
|
|
* contents from an aribitatry fluid state.
|
|
*/
|
|
template <class TypeTag>
|
|
class ImmisciblePrimaryVariables : public FvBasePrimaryVariables<TypeTag>
|
|
{
|
|
using ParentType = FvBasePrimaryVariables<TypeTag>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using Implementation = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
// primary variable indices
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
enum { saturation0Idx = Indices::saturation0Idx };
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
|
|
using Toolbox = typename Opm::MathToolbox<Evaluation>;
|
|
using ComponentVector = Dune::FieldVector<Scalar, numComponents>;
|
|
using ImmiscibleFlash = Opm::ImmiscibleFlash<Scalar, FluidSystem>;
|
|
using EnergyModule = Opm::EnergyModule<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>()>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Default constructor
|
|
*/
|
|
ImmisciblePrimaryVariables() : ParentType()
|
|
{ Opm::Valgrind::SetUndefined(*this); }
|
|
|
|
/*!
|
|
* \brief Constructor with assignment from scalar
|
|
*
|
|
* \param value The scalar value to which all entries of the vector will be set.
|
|
*/
|
|
ImmisciblePrimaryVariables(Scalar value) : ParentType(value)
|
|
{}
|
|
|
|
/*!
|
|
* \brief Copy constructor
|
|
*
|
|
* \param value The primary variables that will be duplicated.
|
|
*/
|
|
ImmisciblePrimaryVariables(const ImmisciblePrimaryVariables& value) = default;
|
|
|
|
/*!
|
|
* \brief Assignment operator
|
|
*
|
|
* \param value The primary variables that will be duplicated.
|
|
*/
|
|
ImmisciblePrimaryVariables& operator=(const ImmisciblePrimaryVariables& value) = default;
|
|
|
|
/*!
|
|
* \brief Set the primary variables from an arbitrary fluid state
|
|
* in a mass conservative way.
|
|
*
|
|
* If an energy equation is included, the fluid temperatures are
|
|
* the same as the one given in the fluid state, *not* the
|
|
* enthalpy.
|
|
*
|
|
* \param fluidState The fluid state which should be represented
|
|
* by the primary variables. The temperatures,
|
|
* pressures, compositions and densities of all
|
|
* phases must be defined.
|
|
* \param matParams The capillary pressure law parameters
|
|
* \param isInEquilibrium If true, the fluid state expresses
|
|
* thermodynamic equilibrium assuming the
|
|
* relations expressed by the fluid
|
|
* system. This implies that in addition to
|
|
* the quantities mentioned above, the
|
|
* fugacities are also defined.
|
|
*/
|
|
template <class FluidState>
|
|
void assignMassConservative(const FluidState& fluidState,
|
|
const MaterialLawParams& matParams,
|
|
bool isInEquilibrium = false)
|
|
{
|
|
#ifndef NDEBUG
|
|
// make sure the temperature is the same in all fluid phases
|
|
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
|
|
assert(std::abs(fluidState.temperature(0) - fluidState.temperature(phaseIdx)) < 1e-30);
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// for the equilibrium case, we don't need complicated
|
|
// computations.
|
|
if (isInEquilibrium) {
|
|
assignNaive(fluidState);
|
|
return;
|
|
}
|
|
|
|
// use a flash calculation to calculate a fluid state in
|
|
// thermodynamic equilibrium
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fsFlash;
|
|
|
|
// use the externally given fluid state as initial value for
|
|
// the flash calculation
|
|
fsFlash.assign(fluidState);
|
|
|
|
// calculate the phase densities
|
|
paramCache.updateAll(fsFlash);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fsFlash, paramCache, phaseIdx);
|
|
fsFlash.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
// calculate the "global molarities"
|
|
ComponentVector globalMolarities(0.0);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
globalMolarities[compIdx] +=
|
|
fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
|
|
}
|
|
}
|
|
|
|
// run the flash calculation
|
|
ImmiscibleFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
|
|
|
|
// use the result to assign the primary variables
|
|
assignNaive(fsFlash);
|
|
}
|
|
|
|
/*!
|
|
* \brief Directly retrieve the primary variables from an
|
|
* arbitrary fluid state.
|
|
*
|
|
* This method retrieves all primary variables from an abitrary
|
|
* fluid state without careing whether the state which is
|
|
* represented by the resulting primary variables features the
|
|
* equivalent mass as the given fluid state. This method is
|
|
* massively cheaper and simpler than assignMassConservative() but
|
|
* it should be used with care!
|
|
*
|
|
* \param fluidState The fluid state which should be represented
|
|
* by the primary variables. The temperatures,
|
|
* pressures, compositions and densities of all
|
|
* phases must be defined.
|
|
*/
|
|
template <class FluidState>
|
|
void assignNaive(const FluidState& fluidState)
|
|
{
|
|
// assign the phase temperatures. this is out-sourced to
|
|
// the energy module
|
|
EnergyModule::setPriVarTemperatures(asImp_(), fluidState);
|
|
|
|
(*this)[pressure0Idx] = fluidState.pressure(/*phaseIdx=*/0);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx)
|
|
(*this)[saturation0Idx + phaseIdx] = fluidState.saturation(phaseIdx);
|
|
}
|
|
|
|
private:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation *>(this); }
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|