opm-simulators/sim_simple.cpp
Bård Skaflestad 60509ca960 Output solution as a MATLAB function.
This way, we can run the example as

    ./sim_simple | sed -n '/s1 *=/,$p' > solution.m

to obtain a MATLAB function containing the 'solution'.
2013-05-06 09:43:48 +02:00

475 lines
16 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AutoDiffBlock.hpp"
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <Eigen/UmfPackSupport>
#include <iostream>
#include <cstdlib>
/*
Equations for incompressible two-phase flow.
Using s and p as variables:
PV (s_i - s0_i) / dt + sum_{j \in U(i)} f(s_j) v_{ij} + sum_{j in D(i) f(s_i) v_{ij} = qw_i
where
v_{ij} = totmob_ij T_ij (p_i - p_j)
Pressure equation:
sum_{j \in N(i)} totmob_ij T_ij (p_i - p_j) = q_i
*/
/// Contains vectors and sparse matrices that represent subsets or
/// operations on (AD or regular) vectors of data.
struct HelperOps
{
typedef AutoDiff::ForwardBlock<double>::M M;
typedef AutoDiff::ForwardBlock<double>::V V;
/// A list of internal faces.
typedef Eigen::Array<int, Eigen::Dynamic, 1> iFaces;
iFaces internal_faces;
/// Extract for each face the difference of its adjacent cells'values.
M ngrad;
/// Extract for each face the average of its adjacent cells' values.
M caver;
/// Extract for each cell the sum of its adjacent faces' (signed) values.
M div;
/// Constructs all helper vectors and matrices.
HelperOps(const UnstructuredGrid& grid)
{
const int nc = grid.number_of_cells;
const int nf = grid.number_of_faces;
// Define some neighbourhood-derived helper arrays.
typedef Eigen::Array<int, Eigen::Dynamic, 1> OneColInt;
typedef Eigen::Array<bool, Eigen::Dynamic, 1> OneColBool;
typedef Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColInt;
typedef Eigen::Array<bool, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColBool;
TwoColInt nb = Eigen::Map<TwoColInt>(grid.face_cells, nf, 2);
// std::cout << "nb = \n" << nb << std::endl;
TwoColBool nbib = nb >= 0;
OneColBool ifaces = nbib.rowwise().all();
const int num_internal = ifaces.cast<int>().sum();
// std::cout << num_internal << " internal faces." << std::endl;
TwoColInt nbi(num_internal, 2);
internal_faces.resize(num_internal);
int fi = 0;
for (int f = 0; f < nf; ++f) {
if (ifaces[f]) {
internal_faces[fi] = f;
nbi.row(fi) = nb.row(f);
++fi;
}
}
// std::cout << "nbi = \n" << nbi << std::endl;
// Create matrices.
ngrad.resize(num_internal, nc);
caver.resize(num_internal, nc);
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> ngrad_tri;
std::vector<Tri> caver_tri;
ngrad_tri.reserve(2*num_internal);
caver_tri.reserve(2*num_internal);
for (int i = 0; i < num_internal; ++i) {
ngrad_tri.emplace_back(i, nbi(i,0), 1.0);
ngrad_tri.emplace_back(i, nbi(i,1), -1.0);
caver_tri.emplace_back(i, nbi(i,0), 0.5);
caver_tri.emplace_back(i, nbi(i,1), 0.5);
}
ngrad.setFromTriplets(ngrad_tri.begin(), ngrad_tri.end());
caver.setFromTriplets(caver_tri.begin(), caver_tri.end());
div = ngrad.transpose();
}
};
#if !defined(NDEBUG)
#include <cstdio>
#endif // !defined(NDEBUG)
namespace {
#if !defined(NDEBUG)
void
printSparseMatrix(const Eigen::SparseMatrix<double>& A,
std::FILE* fp)
{
typedef Eigen::SparseMatrix<double>::Index Index;
const Index* const p = A.outerIndexPtr();
const Index* const i = A.innerIndexPtr();
const double* const x = A.valuePtr();
const Index cols = A.outerSize();
assert (A.innerSize() == cols);
for (Index j = 0; j < cols; j++) {
for (Index k = p[j]; k < p[j + 1]; k++) {
std::fprintf(fp, "%lu %lu %26.18e\n",
static_cast<unsigned long>(i[k] + 1),
static_cast<unsigned long>(j + 1), x[k]);
}
}
}
void
printSparseMatrix(const Eigen::SparseMatrix<double>& A ,
const char* const fn)
{
std::FILE* fp;
fp = std::fopen(fn, "w");
if (fp != 0) {
printSparseMatrix(A, fp);
}
std::fclose(fp);
}
#endif // !defined(NDEBUG)
template <typename Scalar>
class UpwindSelector {
public:
typedef AutoDiff::ForwardBlock<Scalar> ADB;
UpwindSelector(const UnstructuredGrid& g,
const HelperOps& h)
: g_(g), h_(h)
{
}
// Upwind selection in absence of counter-current flow (i.e.,
// without effects of gravity and/or capillary pressure).
std::vector<ADB>
select(const typename ADB::V& press,
const std::vector<ADB>& xc ) const
{
typedef HelperOps::iFaces::Index ifIndex;
const ifIndex nif = h_.internal_faces.size();
// Define selector structure.
typedef typename Eigen::Triplet<Scalar> Triplet;
std::vector<Triplet> s; s.reserve(nif);
for (ifIndex i = 0; i < nif; ++i) {
const int f = h_.internal_faces[i];
const int c1 = g_.face_cells[2*f + 0];
const int c2 = g_.face_cells[2*f + 1];
assert ((c1 >= 0) && (c2 >= 0));
const Scalar dp = press[c1] - press[c2];
const int c = (! (dp < Scalar(0))) ? c1 : c2;
s.push_back(Triplet(i, c, Scalar(1)));
}
// Assemble explicit selector operator.
typename ADB::M S(nif, g_.number_of_cells);
S.setFromTriplets(s.begin(), s.end());
// Apply selector.
//
// Absence of counter-current flow means that the same
// selector applies to all quantities, 'x', defined per
// cell.
std::vector<ADB> xf; xf.reserve(xc.size());
for (typename std::vector<ADB>::const_iterator
b = xc.begin(), e = xc.end(); b != e; ++b)
{
xf.push_back(S * (*b));
}
return xf;
}
private:
const UnstructuredGrid& g_;
const HelperOps& h_;
};
}
template <class ADB>
std::vector<ADB>
phaseMobility(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const typename ADB::V& sw)
{
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
typedef Eigen::Array<double, Eigen::Dynamic, 4, Eigen::RowMajor> FourCol;
typedef typename ADB::V V;
typedef typename ADB::M M;
const int nc = props.numCells();
TwoCol s(nc, 2);
s.leftCols<1>() = sw;
s.rightCols<1>() = 1.0 - s.leftCols<1>();
TwoCol kr(nc, 2);
FourCol dkr(nc, 4);
props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data());
V krw = kr.leftCols<1>();
V kro = kr.rightCols<1>();
V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix.
V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix.
M krwjac(nc,nc);
M krojac(nc,nc);
auto sizes = Eigen::ArrayXi::Ones(nc);
krwjac.reserve(sizes);
krojac.reserve(sizes);
for (int c = 0; c < nc; ++c) {
krwjac.insert(c,c) = dkrw(c);
krojac.insert(c,c) = dkro(c);
}
const double* mu = props.viscosity();
std::vector<M> dmw = { krwjac/mu[0] };
std::vector<M> dmo = { krojac/mu[1] };
std::vector<ADB> pmobc = { ADB::function(krw / mu[0], dmw) ,
ADB::function(kro / mu[1], dmo) };
return pmobc;
}
/// Returns fw(sw).
template <class ADB>
ADB
fluxFunc(const std::vector<ADB>& m)
{
assert (m.size() == 2);
ADB f = m[0] / (m[0] + m[1]);
return f;
}
int main()
{
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
Opm::time::StopWatch clock;
clock.start();
Opm::GridManager gm(3,3);//(50, 50, 10);
const UnstructuredGrid& grid = *gm.c_grid();
using namespace Opm::unit;
using namespace Opm::prefix;
// Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
// { 1000.0, 800.0 },
// { 1.0*centi*Poise, 5.0*centi*Poise },
// 0.2, 100*milli*darcy,
// grid.dimensions, grid.number_of_cells);
// Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
// { 1000.0, 1000.0 },
// { 1.0, 1.0 },
// 1.0, 1.0,
// grid.dimensions, grid.number_of_cells);
Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
{ 1000.0, 1000.0 },
{ 1.0, 30.0 },
1.0, 1.0,
grid.dimensions, grid.number_of_cells);
std::vector<double> htrans(grid.cell_facepos[grid.number_of_cells]);
tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data());
// std::vector<double> trans(grid.number_of_faces);
V trans_all(grid.number_of_faces);
tpfa_trans_compute((UnstructuredGrid*)&grid, htrans.data(), trans_all.data());
const int nc = grid.number_of_cells;
std::vector<int> allcells(nc);
for (int i = 0; i < nc; ++i) {
allcells[i] = i;
}
std::cerr << "Opm core " << clock.secsSinceLast() << std::endl;
// Define neighbourhood-derived operator matrices.
HelperOps ops(grid);
const int num_internal = ops.internal_faces.size();
V transi(num_internal);
for (int fi = 0; fi < num_internal; ++fi) {
transi[fi] = trans_all[ops.internal_faces[fi]];
}
std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl;
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
// q
V q(nc);
q.setZero();
q[0] = 1.0;
q[nc-1] = -1.0;
// s0 - this is explicit now
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
TwoCol s0(nc, 2);
s0.leftCols<1>().setZero();
s0.rightCols<1>().setOnes();
// totmob - explicit as well
TwoCol kr(nc, 2);
props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0);
V krw = kr.leftCols<1>();
V kro = kr.rightCols<1>();
const double* mu = props.viscosity();
V totmob = krw/mu[0] + kro/mu[1];
V totmobf = (ops.caver*totmob.matrix()).array();
// Mobility-weighted transmissibilities per internal face.
// Still explicit, and no upwinding!
V mobtransf = totmobf*transi;
std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl;
// Initial pressure.
V p0(nc,1);
p0.fill(200*Opm::unit::barsa);
// First actual AD usage: defining pressure variable.
std::vector<int> block_pattern = { nc };
// Could actually write { nc } instead of block_pattern below,
// but we prefer a named variable since we will repeat it.
ADB p = ADB::variable(0, p0, block_pattern);
ADB ngradp = ops.ngrad*p;
// We want flux = totmob*trans*(p_i - p_j) for the ij-face.
// We only need to multiply mobtransf and pdiff_face,
// but currently multiplication with constants is not in,
// so we define an AD constant to multiply with.
ADB mobtransf_ad = ADB::constant(mobtransf, block_pattern);
ADB flux = mobtransf_ad*ngradp;
ADB residual = ops.div*flux - ADB::constant(q, block_pattern);
std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;
// It's the residual we want to be zero. We know it's linear in p,
// so we just need a single linear solve. Since we have formulated
// ourselves with a residual and jacobian we do this with a single
// Newton step (hopefully easy to extend later):
// p = p0 - J(p0) \ R(p0)
// Where R(p0) and J(p0) are contained in residual.value() and
// residual.derived()[0].
Eigen::UmfPackLU<M> solver;
M matr = residual.derivative()[0];
matr.coeffRef(0,0) *= 2.0;
matr.makeCompressed();
solver.compute(matr);
if (solver.info() != Eigen::Success) {
std::cerr << "Pressure/flow Jacobian decomposition error\n";
return EXIT_FAILURE;
}
Eigen::VectorXd x = solver.solve(residual.value().matrix());
if (solver.info() != Eigen::Success) {
std::cerr << "Pressure/flow solve failure\n";
return EXIT_FAILURE;
}
V p1 = p0 - x.array();
std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
// std::cout << p1 << std::endl;
// ------ Transport solve ------
// Now we'll try to do a transport step as well.
// Residual formula is
// R_w = s_w - s_w^0 + dt/pv * (div v_w)
// where
// v_w = f_w v
// and f_w is (for now) based on averaged mobilities, not upwind.
double res_norm = 1e100;
V s1 = /*s0.leftCols<1>()*/0.5*V::Ones(nc,1); // Initial guess.
UpwindSelector<double> upws(grid, ops);
const ADB nkdp = (ADB::constant(transi , block_pattern) *
ADB::constant(ops.ngrad * p1.matrix(), block_pattern));
const ADB s00 = ADB::constant(s0.leftCols<1>(), block_pattern);
const std::vector<ADB> pmobc0 = phaseMobility<ADB>(props, allcells, s00.value());
const std::vector<ADB> pmobf0 = upws.select(p1, pmobc0);
const std::vector<ADB::M> null = { ADB::M(transi.size(), nc) };
const ADB dflux = (ADB::function((pmobf0[0] + pmobf0[1]).value(), null) *
ADB::function(nkdp.value() , null));
std::cout.setf(std::ios::scientific);
std::cout.precision(16);
int it = 0;
do {
const std::vector<int>& bp = block_pattern;
ADB s = ADB::variable(0, s1, bp);
const double dt = 0.0005;
V pv = Eigen::Map<const V>(props.porosity(), nc, 1)
* Eigen::Map<const V>(grid.cell_volumes, nc, 1);
V dtpv = dt/pv;
// std::cout << dtpv;
std::vector<ADB> pmobc = phaseMobility<ADB>(props, allcells, s.value());
std::vector<ADB> pmobf = upws.select(p1, pmobc);
ADB fw_cell = fluxFunc(pmobc);
const ADB fw_face = fluxFunc(pmobf);
ADB flux1 = fw_face * dflux;
// std::cout << flux1;
V qneg = dtpv*q;
V qpos = dtpv*q;
// Cheating a bit...
qneg[0] = 0.0;
qpos[nc-1] = 0.0;
ADB qtr_ad = ADB::constant(qpos, bp) + fw_cell*ADB::constant(qneg, bp);
ADB transport_residual = s - ADB::constant(s0.leftCols<1>(), bp)
+ ADB::constant(dtpv, bp)*(ops.div*flux1)
- qtr_ad;
res_norm = transport_residual.value().matrix().norm();
std::cout << "res_norm[" << it << "] = "
<< res_norm << std::endl;
matr = transport_residual.derivative()[0];
matr.makeCompressed();
// std::cout << transport_residual;
solver.compute(matr);
if (solver.info() != Eigen::Success) {
std::cerr << "Transport Jacobian decomposition error\n";
return EXIT_FAILURE;
}
x = solver.solve(transport_residual.value().matrix());
if (solver.info() != Eigen::Success) {
std::cerr << "Transport solve failure\n";
return EXIT_FAILURE;
}
// std::cout << x << std::endl;
s1 = s.value() - x.array();
std::cerr << "Solve for s[" << it << "]: "
<< clock.secsSinceLast() << '\n';
for (int c = 0; c < nc; ++c) {
s1[c] = std::min(1.0, std::max(0.0, s1[c]));
}
it += 1;
} while (res_norm > 1e-7);
std::cout << "Saturation solution:\n"
<< "function s1 = solution\n"
<< "s1 = [\n" << s1 << "\n]\n";
}