opm-simulators/ebos/ecloutputblackoilmodule.hh

2381 lines
121 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::EclOutputBlackOilModule
*/
#ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
#define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
#include <array>
#include <numeric>
#include <optional>
#include <stdexcept>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/output/eclipse/Inplace.hpp>
#include <dune/common/fvector.hh>
#include <type_traits>
namespace Opm::Properties {
// create new type tag for the Ecl-output
namespace TTag {
struct EclOutputBlackOil {};
}
template<class TypeTag, class MyTypeTag>
struct ForceDisableFluidInPlaceOutput {
using type = UndefinedProperty;
};
template<class TypeTag>
struct ForceDisableFluidInPlaceOutput<TypeTag, TTag::EclOutputBlackOil> {
static constexpr bool value = false;
};
} // namespace Opm::Properties
namespace Opm {
namespace {
std::string EclString(Opm::Inplace::Phase phase) {
switch(phase) {
case Opm::Inplace::Phase::WATER: return "WIP";
case Opm::Inplace::Phase::OIL: return "OIP";
case Opm::Inplace::Phase::GAS: return "GIP";
case Opm::Inplace::Phase::OilInLiquidPhase: return "OIPL";
case Opm::Inplace::Phase::OilInGasPhase: return "OIPG";
case Opm::Inplace::Phase::GasInLiquidPhase: return "GIPL";
case Opm::Inplace::Phase::GasInGasPhase: return "GIPG";
case Opm::Inplace::Phase::PoreVolume: return "RPV";
}
throw std::logic_error("Phase not recognized");
}
namespace ID {
static const std::string PressurePV = "PressurePV";
static const std::string HydroCarbonPV = "PVHydroCarbon";
static const std::string PressureHydroCarbonPV = "PressurePVHydroCarbon";
}
}
// forward declaration
template <class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Output module for the results black oil model writing in
* ECL binary format.
*/
template <class TypeTag>
class EclOutputBlackOilModule
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementIterator = typename GridView::template Codim<0>::Iterator;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
typedef std::vector<Scalar> ScalarBuffer;
typedef std::vector<std::string> StringBuffer;
struct WellProdDataType
{
enum WPId
{
WellLocationi = 0, //WLi
WellLocationj = 1, //WLj
OilRate = 2, //OR
WaterRate = 3, //WR
GasRate = 4, //GR
FluidResVol = 5, //FRV
WaterCut = 6, //WC
GasOilRatio = 7, //GOR
WatGasRatio = 8, //WGR
BHP = 9, //BHP
THP = 10, //THP
SteadyStatePI = 11, //SteadyStatePI
WellName = 0, //WName
CTRLMode = 1, //CTRL
};
static const int numWPValues = 12;
static const int numWPNames = 2;
};
struct WellInjDataType
{
enum WIId
{
WellLocationi = 0, //WLi
WellLocationj = 1, //WLj
OilRate = 2, //OR
WaterRate = 3, //WR
GasRate = 4, //GR
FluidResVol = 5, //FRV
BHP = 6, //BHP
THP = 7, //THP
SteadyStateII = 8, //SteadyStateII
WellName = 0, //WName
CTRLModeOil = 1, //CTRLo
CTRLModeWat = 2, //CTRLw
CTRLModeGas = 3, //CTRLg
};
static const int numWIValues = 9;
static const int numWINames = 4;
};
struct WellCumDataType
{
enum WCId
{
WellLocationi = 0, //WLi
WellLocationj = 1, //WLj
OilProd = 2, //OP
WaterProd = 3, //WP
GasProd = 4, //GP
FluidResVolProd = 5, //FRVP
OilInj = 6, //OI
WaterInj = 7, //WI
GasInj = 8, //GI
FluidResVolInj = 9, //FRVI
WellName = 0, //WName
WellType = 1, //WType
WellCTRL = 2, //WCTRL
};
static const int numWCValues = 10;
static const int numWCNames = 3;
};
public:
template<class CollectDataToIORankType>
EclOutputBlackOilModule(const Simulator& simulator, const CollectDataToIORankType& collectToIORank)
: simulator_(simulator)
{
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
const auto& fp = simulator_.vanguard().eclState().fieldProps();
this->regions_["FIPNUM"] = fp.get_int("FIPNUM");
for (const auto& region : summaryConfig.fip_regions())
this->regions_[region] = fp.get_int(region);
for (auto& region_pair : this->regions_)
createLocalRegion_(region_pair.second);
this->RPRNodes_ = summaryConfig.keywords("RPR*");
this->RPRPNodes_ = summaryConfig.keywords("RPRP*");
for (const auto& phase : Opm::Inplace::phases()) {
std::string key_pattern = "R" + EclString(phase) + "*";
this->regionNodes_[phase] = summaryConfig.keywords(key_pattern);
}
for (const auto& node: summaryConfig) {
if (node.category() == SummaryConfigNode::Category::Block) {
if (collectToIORank.isCartIdxOnThisRank(node.number() - 1)) {
std::pair<std::string, int> key = std::make_pair(node.keyword(), node.number());
blockData_[key] = 0.0;
}
}
}
forceDisableFipOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput);
}
/*!
* \brief Register all run-time parameters for the Vtk output module.
*/
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput,
"Do not print fluid-in-place values after each report step even if requested by the deck.");
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to ECL output files
*/
void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log, const bool isRestart)
{
if (!std::is_same<Discretization, Opm::EcfvDiscretization<TypeTag> >::value)
return;
// Summary output is for all steps
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
// Only output RESTART_AUXILIARY asked for by the user.
const Opm::RestartConfig& restartConfig = simulator_.vanguard().schedule().restart();
std::map<std::string, int> rstKeywords = restartConfig.getRestartKeywords(reportStepNum);
for (auto& [keyword, should_write] : rstKeywords) {
if (this->isOutputCreationDirective_(keyword)) {
// 'BASIC', 'FREQ' and similar. Don't attempt to create
// cell-based output for these keywords and don't warn about
// not being able to create such cell-based result vectors.
should_write = 0;
}
else {
should_write = restartConfig.getKeyword(keyword, reportStepNum);
}
}
outputFipRestart_ = false;
computeFip_ = false;
// Fluid in place
for (const auto& phase : Opm::Inplace::phases()) {
if (!substep || summaryConfig.require3DField(EclString(phase))) {
if (rstKeywords["FIP"] > 0) {
rstKeywords["FIP"] = 0;
outputFipRestart_ = true;
}
fip_[phase].resize(bufferSize, 0.0);
computeFip_ = true;
}
else
fip_[phase].clear();
}
if (!substep || summaryConfig.hasKeyword("FPR") || summaryConfig.hasKeyword("FPRP") || !this->RPRNodes_.empty()) {
fip_[Opm::Inplace::Phase::PoreVolume].resize(bufferSize, 0.0);
hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
pressureTimesPoreVolume_.resize(bufferSize, 0.0);
pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0);
}
else {
hydrocarbonPoreVolume_.clear();
pressureTimesPoreVolume_.clear();
pressureTimesHydrocarbonVolume_.clear();
}
// Well RFT data
if (!substep) {
const auto& schedule = simulator_.vanguard().schedule();
const auto& rft_config = schedule.rftConfig();
for (const auto& well: schedule.getWells(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(well.name())) {
continue;
}
if (!rft_config.active(reportStepNum))
continue;
for (const auto& connection: well.getConnections()) {
const size_t i = size_t(connection.getI());
const size_t j = size_t(connection.getJ());
const size_t k = size_t(connection.getK());
const size_t index = simulator_.vanguard().eclState().gridDims().getGlobalIndex(i, j, k);
if (FluidSystem::phaseIsActive(oilPhaseIdx))
oilConnectionPressures_.emplace(std::make_pair(index, 0.0));
if (FluidSystem::phaseIsActive(waterPhaseIdx))
waterConnectionSaturations_.emplace(std::make_pair(index, 0.0));
if (FluidSystem::phaseIsActive(gasPhaseIdx))
gasConnectionSaturations_.emplace(std::make_pair(index, 0.0));
}
}
}
// field data should be allocated
// 1) when we want to restart
// 2) when it is ask for by the user via restartConfig
// 3) when it is not a substep
if (!isRestart && (!restartConfig.getWriteRestartFile(reportStepNum, log) || substep))
return;
// always output saturation of active phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
saturation_[phaseIdx].resize(bufferSize, 0.0);
}
// and oil pressure
oilPressure_.resize(bufferSize, 0.0);
rstKeywords["PRES"] = 0;
rstKeywords["PRESSURE"] = 0;
// allocate memory for temperature
if (enableEnergy || rstKeywords["TEMP"]) {
temperature_.resize(bufferSize, 0.0);
rstKeywords["TEMP"] = 0;
}
if (FluidSystem::phaseIsActive(oilPhaseIdx))
rstKeywords["SOIL"] = 0;
if (FluidSystem::phaseIsActive(gasPhaseIdx))
rstKeywords["SGAS"] = 0;
if (FluidSystem::phaseIsActive(waterPhaseIdx))
rstKeywords["SWAT"] = 0;
if (FluidSystem::enableDissolvedGas()) {
rs_.resize(bufferSize, 0.0);
rstKeywords["RS"] = 0;
}
if (FluidSystem::enableVaporizedOil()) {
rv_.resize(bufferSize, 0.0);
rstKeywords["RV"] = 0;
}
if (getPropValue<TypeTag, Properties::EnableSolvent>())
sSol_.resize(bufferSize, 0.0);
if (getPropValue<TypeTag, Properties::EnablePolymer>())
cPolymer_.resize(bufferSize, 0.0);
if (getPropValue<TypeTag, Properties::EnableFoam>())
cFoam_.resize(bufferSize, 0.0);
if (getPropValue<TypeTag, Properties::EnableBrine>())
cSalt_.resize(bufferSize, 0.0);
if (getPropValue<TypeTag, Properties::EnableExtbo>()) {
extboX_.resize(bufferSize, 0.0);
extboY_.resize(bufferSize, 0.0);
extboZ_.resize(bufferSize, 0.0);
mFracOil_.resize(bufferSize, 0.0);
mFracGas_.resize(bufferSize, 0.0);
mFracCo2_.resize(bufferSize, 0.0);
}
if (simulator_.problem().vapparsActive())
soMax_.resize(bufferSize, 0.0);
if (simulator_.problem().materialLawManager()->enableHysteresis()) {
pcSwMdcOw_.resize(bufferSize, 0.0);
krnSwMdcOw_.resize(bufferSize, 0.0);
pcSwMdcGo_.resize(bufferSize, 0.0);
krnSwMdcGo_.resize(bufferSize, 0.0);
}
if (simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT")) {
ppcw_.resize(bufferSize, 0.0);
rstKeywords["PPCW"] = 0;
}
if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) {
rstKeywords["RSSAT"] = 0;
gasDissolutionFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) {
rstKeywords["RVSAT"] = 0;
oilVaporizationFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) {
rstKeywords["BW"] = 0;
invB_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) {
rstKeywords["BO"] = 0;
invB_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) {
rstKeywords["BG"] = 0;
invB_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (rstKeywords["DEN"] > 0) {
rstKeywords["DEN"] = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
density_[phaseIdx].resize(bufferSize, 0.0);
}
}
const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
rstKeywords["VISC"] = 0;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) {
rstKeywords["VWAT"] = 0;
viscosity_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) {
rstKeywords["VOIL"] = 0;
viscosity_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) {
rstKeywords["VGAS"] = 0;
viscosity_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) {
rstKeywords["KRW"] = 0;
relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) {
rstKeywords["KRO"] = 0;
relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) {
rstKeywords["KRG"] = 0;
relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (rstKeywords["PBPD"] > 0) {
rstKeywords["PBPD"] = 0;
bubblePointPressure_.resize(bufferSize, 0.0);
dewPointPressure_.resize(bufferSize, 0.0);
}
// tracers
const int numTracers = simulator_.problem().tracerModel().numTracers();
if (numTracers > 0){
tracerConcentrations_.resize(numTracers);
for (int tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
{
tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
}
}
// ROCKC
if (rstKeywords["ROCKC"] > 0) {
rstKeywords["ROCKC"] = 0;
rockCompPorvMultiplier_.resize(bufferSize, 0.0);
rockCompTransMultiplier_.resize(bufferSize, 0.0);
swMax_.resize(bufferSize, 0.0);
minimumOilPressure_.resize(bufferSize, 0.0);
overburdenPressure_.resize(bufferSize, 0.0);
}
//Warn for any unhandled keyword
if (log) {
for (auto& keyValue: rstKeywords) {
if (keyValue.second > 0) {
std::string logstring = "Keyword '";
logstring.append(keyValue.first);
logstring.append("' is unhandled for output to file.");
Opm::OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
failedCellsPb_.clear();
failedCellsPd_.clear();
// Not supported in flow legacy
if (false)
saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0);
if (false)
oilSaturationPressure_.resize(bufferSize, 0.0);
}
/*!
* \brief Modify the internal buffers according to the intensive quanties relevant
* for an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!std::is_same<Discretization, Opm::EcfvDiscretization<TypeTag> >::value)
return;
const auto& problem = elemCtx.simulator().problem();
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) {
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
typedef typename std::remove_const<typename std::remove_reference<decltype(fs)>::type>::type FluidState;
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (saturation_[phaseIdx].size() == 0)
continue;
saturation_[phaseIdx][globalDofIdx] = Opm::getValue(fs.saturation(phaseIdx));
Opm::Valgrind::CheckDefined(saturation_[phaseIdx][globalDofIdx]);
}
if (oilPressure_.size() > 0) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx));
}else{
// put pressure in oil pressure for output
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(waterPhaseIdx));
} else {
oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(gasPhaseIdx));
}
}
Opm::Valgrind::CheckDefined(oilPressure_[globalDofIdx]);
}
if (temperature_.size() > 0) {
temperature_[globalDofIdx] = Opm::getValue(fs.temperature(oilPhaseIdx));
Opm::Valgrind::CheckDefined(temperature_[globalDofIdx]);
}
if (gasDissolutionFactor_.size() > 0) {
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
gasDissolutionFactor_[globalDofIdx] =
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx, SoMax);
Opm::Valgrind::CheckDefined(gasDissolutionFactor_[globalDofIdx]);
}
if (oilVaporizationFactor_.size() > 0) {
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
oilVaporizationFactor_[globalDofIdx] =
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx, SoMax);
Opm::Valgrind::CheckDefined(oilVaporizationFactor_[globalDofIdx]);
}
if (gasFormationVolumeFactor_.size() > 0) {
gasFormationVolumeFactor_[globalDofIdx] =
1.0/FluidSystem::template inverseFormationVolumeFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx);
Opm::Valgrind::CheckDefined(gasFormationVolumeFactor_[globalDofIdx]);
}
if (saturatedOilFormationVolumeFactor_.size() > 0) {
saturatedOilFormationVolumeFactor_[globalDofIdx] =
1.0/FluidSystem::template saturatedInverseFormationVolumeFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
Opm::Valgrind::CheckDefined(saturatedOilFormationVolumeFactor_[globalDofIdx]);
}
if (oilSaturationPressure_.size() > 0) {
oilSaturationPressure_[globalDofIdx] =
FluidSystem::template saturationPressure<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
Opm::Valgrind::CheckDefined(oilSaturationPressure_[globalDofIdx]);
}
if (rs_.size()) {
rs_[globalDofIdx] = Opm::getValue(fs.Rs());
Opm::Valgrind::CheckDefined(rs_[globalDofIdx]);
}
if (rv_.size()) {
rv_[globalDofIdx] = Opm::getValue(fs.Rv());
Opm::Valgrind::CheckDefined(rv_[globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (invB_[phaseIdx].size() == 0)
continue;
invB_[phaseIdx][globalDofIdx] = Opm::getValue(fs.invB(phaseIdx));
Opm::Valgrind::CheckDefined(invB_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (density_[phaseIdx].size() == 0)
continue;
density_[phaseIdx][globalDofIdx] = Opm::getValue(fs.density(phaseIdx));
Opm::Valgrind::CheckDefined(density_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (viscosity_[phaseIdx].size() == 0)
continue;
if (extboX_.size() > 0 && phaseIdx==oilPhaseIdx)
viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.oilViscosity());
else if (extboX_.size() > 0 && phaseIdx==gasPhaseIdx)
viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.gasViscosity());
else
viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(fs.viscosity(phaseIdx));
Opm::Valgrind::CheckDefined(viscosity_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (relativePermeability_[phaseIdx].size() == 0)
continue;
relativePermeability_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.relativePermeability(phaseIdx));
Opm::Valgrind::CheckDefined(relativePermeability_[phaseIdx][globalDofIdx]);
}
if (sSol_.size() > 0) {
sSol_[globalDofIdx] = intQuants.solventSaturation().value();
}
if (cPolymer_.size() > 0) {
cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value();
}
if (cFoam_.size() > 0) {
cFoam_[globalDofIdx] = intQuants.foamConcentration().value();
}
if (cSalt_.size() > 0) {
cSalt_[globalDofIdx] = fs.saltConcentration().value();
}
if (extboX_.size() > 0) {
extboX_[globalDofIdx] = intQuants.xVolume().value();
}
if (extboY_.size() > 0) {
extboY_[globalDofIdx] = intQuants.yVolume().value();
}
if (extboZ_.size() > 0) {
extboZ_[globalDofIdx] = intQuants.zFraction().value();
}
if (mFracCo2_.size() > 0) {
const Scalar stdVolOil = Opm::getValue(fs.saturation(oilPhaseIdx))*Opm::getValue(fs.invB(oilPhaseIdx))
+ Opm::getValue(fs.saturation(gasPhaseIdx))*Opm::getValue(fs.invB(gasPhaseIdx))*Opm::getValue(fs.Rv());
const Scalar stdVolGas = Opm::getValue(fs.saturation(gasPhaseIdx))*Opm::getValue(fs.invB(gasPhaseIdx))*(1.0-intQuants.yVolume().value())
+ Opm::getValue(fs.saturation(oilPhaseIdx))*Opm::getValue(fs.invB(oilPhaseIdx))*Opm::getValue(fs.Rs())*(1.0-intQuants.xVolume().value());
const Scalar stdVolCo2 = Opm::getValue(fs.saturation(gasPhaseIdx))*Opm::getValue(fs.invB(gasPhaseIdx))*intQuants.yVolume().value()
+ Opm::getValue(fs.saturation(oilPhaseIdx))*Opm::getValue(fs.invB(oilPhaseIdx))*Opm::getValue(fs.Rs())*intQuants.xVolume().value();
const Scalar rhoO= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
const Scalar rhoG= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
const Scalar rhoCO2= intQuants.zRefDensity();
const Scalar stdMassTotal= 1.0e-10 + stdVolOil*rhoO + stdVolGas*rhoG + stdVolCo2*rhoCO2;
mFracOil_[globalDofIdx] = stdVolOil*rhoO/stdMassTotal;
mFracGas_[globalDofIdx] = stdVolGas*rhoG/stdMassTotal;
mFracCo2_[globalDofIdx] = stdVolCo2*rhoCO2/stdMassTotal;
}
if (bubblePointPressure_.size() > 0) {
try {
bubblePointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()));
}
catch (const Opm::NumericalIssue&) {
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
failedCellsPb_.push_back(cartesianIdx);
}
}
if (dewPointPressure_.size() > 0) {
try {
dewPointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()));
}
catch (const Opm::NumericalIssue&) {
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
failedCellsPd_.push_back(cartesianIdx);
}
}
if (soMax_.size() > 0)
soMax_[globalDofIdx] =
std::max(Opm::getValue(fs.saturation(oilPhaseIdx)),
problem.maxOilSaturation(globalDofIdx));
if (swMax_.size() > 0)
swMax_[globalDofIdx] =
std::max(Opm::getValue(fs.saturation(waterPhaseIdx)),
problem.maxWaterSaturation(globalDofIdx));
if (minimumOilPressure_.size() > 0)
minimumOilPressure_[globalDofIdx] =
std::min(Opm::getValue(fs.pressure(oilPhaseIdx)),
problem.minOilPressure(globalDofIdx));
if (overburdenPressure_.size() > 0)
overburdenPressure_[globalDofIdx] = problem.overburdenPressure(globalDofIdx);
if (rockCompPorvMultiplier_.size() > 0)
rockCompPorvMultiplier_[globalDofIdx] = problem.template rockCompPoroMultiplier<Scalar>(intQuants, globalDofIdx);
if (rockCompTransMultiplier_.size() > 0)
rockCompTransMultiplier_[globalDofIdx] = problem.template rockCompTransMultiplier<Scalar>(intQuants, globalDofIdx);
const auto& matLawManager = problem.materialLawManager();
if (matLawManager->enableHysteresis()) {
if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) {
matLawManager->oilWaterHysteresisParams(
pcSwMdcOw_[globalDofIdx],
krnSwMdcOw_[globalDofIdx],
globalDofIdx);
}
if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) {
matLawManager->gasOilHysteresisParams(
pcSwMdcGo_[globalDofIdx],
krnSwMdcGo_[globalDofIdx],
globalDofIdx);
}
}
if (ppcw_.size() > 0) {
ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow;
//printf("ppcw_[%d] = %lg\n", globalDofIdx, ppcw_[globalDofIdx]);
}
// hack to make the intial output of rs and rv Ecl compatible.
// For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step
// where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite
// rs and rv with the values computed in the initially.
// Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values.
// This can be removed when ebos has 100% controll over output
if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto& fsInitial = problem.initialFluidState(globalDofIdx);
// use initial rs and rv values
if (rv_.size() > 0)
rv_[globalDofIdx] = fsInitial.Rv();
if (rs_.size() > 0)
rs_[globalDofIdx] = fsInitial.Rs();
// re-compute the volume factors, viscosities and densities if asked for
if (density_[oilPhaseIdx].size() > 0)
density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (density_[gasPhaseIdx].size() > 0)
density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
if (invB_[oilPhaseIdx].size() > 0)
invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (invB_[gasPhaseIdx].size() > 0)
invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
if (viscosity_[oilPhaseIdx].size() > 0)
viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (viscosity_[gasPhaseIdx].size() > 0)
viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
}
// Add fluid in Place values
updateFluidInPlace_(elemCtx, dofIdx);
// Adding block data
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
for (auto& val: blockData_) {
const auto& key = val.first;
int cartesianIdxBlock = key.second - 1;
if (cartesianIdx == cartesianIdxBlock) {
if (key.first == "BWSAT")
val.second = Opm::getValue(fs.saturation(waterPhaseIdx));
else if (key.first == "BGSAT")
val.second = Opm::getValue(fs.saturation(gasPhaseIdx));
else if (key.first == "BOSAT")
val.second = 1. - Opm::getValue(fs.saturation(gasPhaseIdx)) - Opm::getValue(fs.saturation(waterPhaseIdx));
else if (key.first == "BPR")
val.second = Opm::getValue(fs.pressure(oilPhaseIdx));
else if (key.first == "BWKR" || key.first == "BKRW")
val.second = Opm::getValue(intQuants.relativePermeability(waterPhaseIdx));
else if (key.first == "BGKR" || key.first == "BKRG")
val.second = Opm::getValue(intQuants.relativePermeability(gasPhaseIdx));
else if (key.first == "BOKR" || key.first == "BKRO")
val.second = Opm::getValue(intQuants.relativePermeability(oilPhaseIdx));
else if (key.first == "BWPC")
val.second = Opm::getValue(fs.pressure(oilPhaseIdx)) - Opm::getValue(fs.pressure(waterPhaseIdx));
else if (key.first == "BGPC")
val.second = Opm::getValue(fs.pressure(gasPhaseIdx)) - Opm::getValue(fs.pressure(oilPhaseIdx));
else if (key.first == "BVWAT" || key.first == "BWVIS")
val.second = Opm::getValue(fs.viscosity(waterPhaseIdx));
else if (key.first == "BVGAS" || key.first == "BGVIS")
val.second = Opm::getValue(fs.viscosity(gasPhaseIdx));
else if (key.first == "BVOIL" || key.first == "BOVIS")
val.second = Opm::getValue(fs.viscosity(oilPhaseIdx));
else {
std::string logstring = "Keyword '";
logstring.append(key.first);
logstring.append("' is unhandled for output to file.");
Opm::OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
// Adding Well RFT data
if (oilConnectionPressures_.count(cartesianIdx) > 0) {
oilConnectionPressures_[cartesianIdx] = Opm::getValue(fs.pressure(oilPhaseIdx));
}
if (waterConnectionSaturations_.count(cartesianIdx) > 0) {
waterConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(waterPhaseIdx));
}
if (gasConnectionSaturations_.count(cartesianIdx) > 0) {
gasConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(gasPhaseIdx));
}
// tracers
const auto& tracerModel = simulator_.problem().tracerModel();
if (tracerConcentrations_.size()>0) {
for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){
if (tracerConcentrations_[tracerIdx].size() == 0)
continue;
tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx);
}
}
}
}
void outputErrorLog()
{
const size_t maxNumCellsFaillog = 20;
int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size();
std::vector<int> displPb, displPd, recvLenPb, recvLenPd;
const auto& comm = simulator_.gridView().comm();
if (isIORank_()) {
displPb.resize(comm.size()+1, 0);
displPd.resize(comm.size()+1, 0);
recvLenPb.resize(comm.size());
recvLenPd.resize(comm.size());
}
comm.gather(&pbSize, recvLenPb.data(), 1, 0);
comm.gather(&pdSize, recvLenPd.data(), 1, 0);
std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1);
std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1);
std::vector<int> globalFailedCellsPb, globalFailedCellsPd;
if (isIORank_()) {
globalFailedCellsPb.resize(displPb.back());
globalFailedCellsPd.resize(displPd.back());
}
comm.gatherv(failedCellsPb_.data(), static_cast<int>(failedCellsPb_.size()),
globalFailedCellsPb.data(), recvLenPb.data(),
displPb.data(), 0);
comm.gatherv(failedCellsPd_.data(), static_cast<int>(failedCellsPd_.size()),
globalFailedCellsPd.data(), recvLenPd.data(),
displPd.data(), 0);
std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end());
std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end());
if (globalFailedCellsPb.size() > 0) {
std::stringstream errlog;
errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells [";
errlog << globalFailedCellsPb[0];
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size());
for (size_t i = 1; i < maxElems; ++i) {
errlog << ", " << globalFailedCellsPb[i];
}
if (globalFailedCellsPb.size() > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << "]";
Opm::OpmLog::warning("Bubble point numerical problem", errlog.str());
}
if (globalFailedCellsPd.size() > 0) {
std::stringstream errlog;
errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells [";
errlog << globalFailedCellsPd[0];
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size());
for (size_t i = 1; i < maxElems; ++i) {
errlog << ", " << globalFailedCellsPd[i];
}
if (globalFailedCellsPd.size() > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << "]";
Opm::OpmLog::warning("Dew point numerical problem", errlog.str());
}
}
void addRftDataToWells(Opm::data::Wells& wellDatas, size_t reportStepNum)
{
const auto& schedule = simulator_.vanguard().schedule();
const auto& rft_config = schedule.rftConfig();
for (const auto& well: schedule.getWells(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(well.name())) {
continue;
}
//add data infrastructure for shut wells
if (!wellDatas.count(well.name())) {
Opm::data::Well wellData;
if (!rft_config.active(reportStepNum))
continue;
wellData.connections.resize(well.getConnections().size());
size_t count = 0;
for (const auto& connection: well.getConnections()) {
const size_t i = size_t(connection.getI());
const size_t j = size_t(connection.getJ());
const size_t k = size_t(connection.getK());
const size_t index = simulator_.vanguard().eclState().gridDims().getGlobalIndex(i, j, k);
auto& connectionData = wellData.connections[count];
connectionData.index = index;
count++;
}
wellDatas.emplace(std::make_pair(well.name(), wellData));
}
Opm::data::Well& wellData = wellDatas.at(well.name());
for (auto& connectionData: wellData.connections) {
const auto index = connectionData.index;
if (oilConnectionPressures_.count(index) > 0)
connectionData.cell_pressure = oilConnectionPressures_.at(index);
if (waterConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_water = waterConnectionSaturations_.at(index);
if (gasConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index);
}
}
oilConnectionPressures_.clear();
waterConnectionSaturations_.clear();
gasConnectionSaturations_.clear();
}
/*!
* \brief Move all buffers to data::Solution.
*/
void assignToSolution(Opm::data::Solution& sol)
{
if (!std::is_same<Discretization, Opm::EcfvDiscretization<TypeTag>>::value)
return;
if (oilPressure_.size() > 0) {
sol.insert("PRESSURE", Opm::UnitSystem::measure::pressure, std::move(oilPressure_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (temperature_.size() > 0) {
sol.insert("TEMP", Opm::UnitSystem::measure::temperature, std::move(temperature_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && saturation_[waterPhaseIdx].size() > 0) {
sol.insert("SWAT", Opm::UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && saturation_[gasPhaseIdx].size() > 0) {
sol.insert("SGAS", Opm::UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION);
}
if (ppcw_.size() > 0) {
sol.insert ("PPCW", Opm::UnitSystem::measure::pressure, std::move(ppcw_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (gasDissolutionFactor_.size() > 0) {
sol.insert("RSSAT", Opm::UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (oilVaporizationFactor_.size() > 0) {
sol.insert("RVSAT", Opm::UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (rs_.size() > 0) {
sol.insert("RS", Opm::UnitSystem::measure::gas_oil_ratio, std::move(rs_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (rv_.size() > 0) {
sol.insert("RV", Opm::UnitSystem::measure::oil_gas_ratio, std::move(rv_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (invB_[waterPhaseIdx].size() > 0) {
sol.insert("1OVERBW", Opm::UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (invB_[oilPhaseIdx].size() > 0) {
sol.insert("1OVERBO", Opm::UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (invB_[gasPhaseIdx].size() > 0) {
sol.insert("1OVERBG", Opm::UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (density_[waterPhaseIdx].size() > 0) {
sol.insert("WAT_DEN", Opm::UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (density_[oilPhaseIdx].size() > 0) {
sol.insert("OIL_DEN", Opm::UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (density_[gasPhaseIdx].size() > 0) {
sol.insert("GAS_DEN", Opm::UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (viscosity_[waterPhaseIdx].size() > 0) {
sol.insert("WAT_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (viscosity_[oilPhaseIdx].size() > 0) {
sol.insert("OIL_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (viscosity_[gasPhaseIdx].size() > 0) {
sol.insert("GAS_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (relativePermeability_[waterPhaseIdx].size() > 0) {
sol.insert("WATKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (relativePermeability_[oilPhaseIdx].size() > 0) {
sol.insert("OILKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (relativePermeability_[gasPhaseIdx].size() > 0) {
sol.insert("GASKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (pcSwMdcOw_.size() > 0)
sol.insert ("PCSWM_OW", Opm::UnitSystem::measure::identity, std::move(pcSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY);
if (krnSwMdcOw_.size() > 0)
sol.insert ("KRNSW_OW", Opm::UnitSystem::measure::identity, std::move(krnSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY);
if (pcSwMdcGo_.size() > 0)
sol.insert ("PCSWM_GO", Opm::UnitSystem::measure::identity, std::move(pcSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY);
if (krnSwMdcGo_.size() > 0)
sol.insert ("KRNSW_GO", Opm::UnitSystem::measure::identity, std::move(krnSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY);
if (soMax_.size() > 0)
sol.insert ("SOMAX", Opm::UnitSystem::measure::identity, std::move(soMax_), Opm::data::TargetType::RESTART_SOLUTION);
if (sSol_.size() > 0)
sol.insert ("SSOLVENT", Opm::UnitSystem::measure::identity, std::move(sSol_), Opm::data::TargetType::RESTART_SOLUTION);
if (extboX_.size() > 0)
sol.insert ("SS_X", Opm::UnitSystem::measure::identity, std::move(extboX_), Opm::data::TargetType::RESTART_SOLUTION);
if (extboY_.size() > 0)
sol.insert ("SS_Y", Opm::UnitSystem::measure::identity, std::move(extboY_), Opm::data::TargetType::RESTART_SOLUTION);
if (extboZ_.size() > 0)
sol.insert ("SS_Z", Opm::UnitSystem::measure::identity, std::move(extboZ_), Opm::data::TargetType::RESTART_SOLUTION);
if (mFracOil_.size() > 0)
sol.insert ("STD_OIL", Opm::UnitSystem::measure::identity, std::move(mFracOil_), Opm::data::TargetType::RESTART_SOLUTION);
if (mFracGas_.size() > 0)
sol.insert ("STD_GAS", Opm::UnitSystem::measure::identity, std::move(mFracGas_), Opm::data::TargetType::RESTART_SOLUTION);
if (mFracCo2_.size() > 0)
sol.insert ("STD_CO2", Opm::UnitSystem::measure::identity, std::move(mFracCo2_), Opm::data::TargetType::RESTART_SOLUTION);
if (cPolymer_.size() > 0)
sol.insert ("POLYMER", Opm::UnitSystem::measure::identity, std::move(cPolymer_), Opm::data::TargetType::RESTART_SOLUTION);
if (cFoam_.size() > 0)
sol.insert ("FOAM", Opm::UnitSystem::measure::identity, std::move(cFoam_), Opm::data::TargetType::RESTART_SOLUTION);
if (cSalt_.size() > 0)
sol.insert ("SALT", Opm::UnitSystem::measure::salinity, std::move(cSalt_), Opm::data::TargetType::RESTART_SOLUTION);
if (dewPointPressure_.size() > 0)
sol.insert ("PDEW", Opm::UnitSystem::measure::pressure, std::move(dewPointPressure_), Opm::data::TargetType::RESTART_AUXILIARY);
if (bubblePointPressure_.size() > 0)
sol.insert ("PBUB", Opm::UnitSystem::measure::pressure, std::move(bubblePointPressure_), Opm::data::TargetType::RESTART_AUXILIARY);
if (swMax_.size() > 0)
sol.insert ("SWMAX", Opm::UnitSystem::measure::identity, std::move(swMax_), Opm::data::TargetType::RESTART_SOLUTION);
if (minimumOilPressure_.size() > 0)
sol.insert ("PRESROCC", Opm::UnitSystem::measure::pressure, std::move(minimumOilPressure_), Opm::data::TargetType::RESTART_SOLUTION);
if (overburdenPressure_.size() > 0)
sol.insert ("PRES_OVB", Opm::UnitSystem::measure::pressure, std::move(overburdenPressure_), Opm::data::TargetType::RESTART_SOLUTION);
if (rockCompPorvMultiplier_.size() > 0)
sol.insert ("PORV_RC", Opm::UnitSystem::measure::identity, std::move(rockCompPorvMultiplier_), Opm::data::TargetType::RESTART_SOLUTION);
if (rockCompTransMultiplier_.size() > 0)
sol.insert ("TMULT_RC", Opm::UnitSystem::measure::identity, std::move(rockCompTransMultiplier_), Opm::data::TargetType::RESTART_SOLUTION);
// Fluid in place
for (const auto& phase : Opm::Inplace::phases()) {
if (outputFipRestart_ && fip_[phase].size() > 0) {
sol.insert(EclString(phase),
Opm::UnitSystem::measure::volume,
fip_[phase],
Opm::data::TargetType::SUMMARY);
}
}
// tracers
const auto& tracerModel = simulator_.problem().tracerModel();
if (tracerConcentrations_.size() > 0) {
for (int tracerIdx = 0; tracerIdx<tracerModel.numTracers(); tracerIdx++){
std::string tmp = tracerModel.tracerName(tracerIdx) + "F";
sol.insert(tmp, Opm::UnitSystem::measure::identity, std::move(tracerConcentrations_[tracerIdx]), Opm::data::TargetType::RESTART_SOLUTION);
}
}
}
int regionMax(const std::vector<int>& region) {
const auto max_value = region.empty() ? 0 : *std::max_element(region.begin(), region.end());
return this->simulator_.gridView().comm().max(max_value);
}
void update(Opm::Inplace& inplace, const std::string& region_name, const std::string& string_id, std::size_t ntFip, const std::vector<double>& values) {
double sum = 0;
for (std::size_t region_number = 0; region_number < ntFip; region_number++) {
inplace.add( region_name, string_id, region_number + 1, values[region_number] );
sum += values[region_number];
}
inplace.add( string_id, sum );
}
void update(Opm::Inplace& inplace, const std::string& region_name, Opm::Inplace::Phase phase, std::size_t ntFip, const std::vector<double>& values) {
double sum = 0;
for (std::size_t region_number = 0; region_number < ntFip; region_number++) {
inplace.add( region_name, phase, region_number + 1, values[region_number] );
sum += values[region_number];
}
inplace.add( phase, sum );
}
void makeRegionSum(Opm::Inplace& inplace, const std::string& region_name) {
const auto& region = this->regions_.at(region_name);
std::size_t ntFip = this->regionMax(region);
update(inplace, region_name, ID::PressurePV, ntFip, this->regionSum(this->pressureTimesPoreVolume_, region, ntFip));
update(inplace, region_name, ID::HydroCarbonPV, ntFip, this->regionSum(this->hydrocarbonPoreVolume_, region, ntFip));
update(inplace, region_name, ID::PressureHydroCarbonPV, ntFip, this->regionSum(this->pressureTimesHydrocarbonVolume_, region, ntFip));
for (const auto& phase : Opm::Inplace::phases())
update(inplace, region_name, phase, ntFip, this->regionSum(this->fip_[phase], region, ntFip));
}
Opm::Inplace accumulateRegionSums() {
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
Opm::Inplace inplace;
for (const auto& [region_name, _] : this->regions_) {
(void)_;
makeRegionSum(inplace, region_name);
}
// The first time the outputFipLog function is run we store the inplace values in
// the initialInplace_ member. This has at least two problems:
//
// o We really want the *initial* value - now we get the value after
// the first timestep.
//
// o For restarted runs this is obviously wrong.
//
// Finally it is of course not desirable to mutate state in an output
// routine.
if (!this->initialInplace_.has_value())
this->initialInplace_ = inplace;
return inplace;
}
Scalar sum(const ScalarBuffer& v) {
return std::accumulate(v.begin(), v.end(), Scalar{0});
}
void updateSummaryRegionValues(const Inplace& inplace,
std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData) const {
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
// The field summary vectors should only use the FIPNUM based region sum.
{
for (const auto& phase : Opm::Inplace::phases()) {
std::string key = "F" + EclString(phase);
if (summaryConfig.hasKeyword(key))
miscSummaryData[key] = inplace.get(phase);
}
if (summaryConfig.hasKeyword("FOE") && this->initialInplace_)
miscSummaryData["FOE"] = inplace.get(Opm::Inplace::Phase::OIL)
/ this->initialInplace_.value().get(Opm::Inplace::Phase::OIL);
if (summaryConfig.hasKeyword("FPR"))
miscSummaryData["FPR"] = pressureAverage_(inplace.get(ID::PressureHydroCarbonPV),
inplace.get(ID::HydroCarbonPV),
inplace.get(ID::PressurePV),
inplace.get(Opm::Inplace::Phase::PoreVolume),
true);
if (summaryConfig.hasKeyword("FPRP"))
miscSummaryData["FPRP"] = pressureAverage_(inplace.get(ID::PressureHydroCarbonPV),
inplace.get(ID::HydroCarbonPV),
inplace.get(ID::PressurePV),
inplace.get(Opm::Inplace::Phase::PoreVolume),
false);
}
// The region summary vectors should loop through the FIPxxx regions to
// support the RPR__xxx summary keywords.
{
for (const auto& phase : Opm::Inplace::phases()) {
for (const auto& node : this->regionNodes_.at(phase))
regionData[node.keyword()] = inplace.get_vector(node.fip_region(), phase);
}
// The exact same quantity is calculated for RPR and RPRP - is that correct?
for (const auto& node : this->RPRNodes_)
regionData[node.keyword()] = pressureAverage_(inplace.get_vector(node.fip_region(), ID::PressureHydroCarbonPV),
inplace.get_vector(node.fip_region(), ID::HydroCarbonPV),
inplace.get_vector(node.fip_region(), ID::PressurePV),
inplace.get_vector(node.fip_region(), Opm::Inplace::Phase::PoreVolume),
true);
for (const auto& node : this->RPRPNodes_)
regionData[node.keyword()] = pressureAverage_(inplace.get_vector(node.fip_region(), ID::PressureHydroCarbonPV),
inplace.get_vector(node.fip_region(), ID::HydroCarbonPV),
inplace.get_vector(node.fip_region(), ID::PressurePV),
inplace.get_vector(node.fip_region(), Opm::Inplace::Phase::PoreVolume),
false);
}
}
void outputFipLogImpl(const Inplace& inplace) const {
{
Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(inplace.get(ID::PressureHydroCarbonPV),
inplace.get(ID::HydroCarbonPV),
inplace.get(ID::PressurePV),
inplace.get(Opm::Inplace::Phase::PoreVolume),
true);
std::unordered_map<Opm::Inplace::Phase, Scalar> initial_values;
std::unordered_map<Opm::Inplace::Phase, Scalar> current_values;
for (const auto& phase : Opm::Inplace::phases()) {
initial_values[phase] = this->initialInplace_->get(phase);
current_values[phase] = inplace.get(phase);
}
fipUnitConvert_(initial_values);
fipUnitConvert_(current_values);
pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure);
outputRegionFluidInPlace_(initial_values,
current_values,
fieldHydroCarbonPoreVolumeAveragedPressure);
}
for (size_t reg = 1; reg <= inplace.max_region("FIPNUM"); ++reg) {
std::unordered_map<Opm::Inplace::Phase, Scalar> initial_values;
std::unordered_map<Opm::Inplace::Phase, Scalar> current_values;
for (const auto& phase : Opm::Inplace::phases()) {
initial_values[phase] = this->initialInplace_->get("FIPNUM", phase, reg);
current_values[phase] = inplace.get("FIPNUM", phase, reg);
}
fipUnitConvert_(initial_values);
fipUnitConvert_(current_values);
Scalar regHydroCarbonPoreVolumeAveragedPressure
= pressureAverage_(inplace.get("FIPNUM", ID::PressureHydroCarbonPV, reg),
inplace.get("FIPNUM", ID::HydroCarbonPV, reg),
inplace.get("FIPNUM", ID::PressurePV, reg),
inplace.get("FIPNUM", Opm::Inplace::Phase::PoreVolume, reg),
true);
pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure);
outputRegionFluidInPlace_(initial_values, current_values, regHydroCarbonPoreVolumeAveragedPressure, reg);
}
}
// write Fluid In Place to output log
void outputFipLog(std::map<std::string, double>& miscSummaryData, std::map<std::string, std::vector<double>>& regionData, const bool substep)
{
auto inplace = this->accumulateRegionSums();
if (!isIORank_())
return;
updateSummaryRegionValues(inplace,
miscSummaryData,
regionData);
if (!substep)
outputFipLogImpl(inplace);
}
// write production report to output
void outputProdLog(size_t reportStepNum, const bool substep, bool forceDisableProdOutput)
{
if (!substep) {
ScalarBuffer tmp_values(WellProdDataType::numWPValues, 0.0);
StringBuffer tmp_names(WellProdDataType::numWPNames, "");
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
const auto& st = simulator_.vanguard().summaryState();
const auto& schedule = simulator_.vanguard().schedule();
for (const auto& gname: schedule.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
tmp_values[2] = get("GOPR"); //WellProdDataType::OilRate
tmp_values[3] = get("GWPR"); //WellProdDataType::WaterRate
tmp_values[4] = get("GGPR"); //WellProdDataType::GasRate
tmp_values[5] = get("GVPR"); //WellProdDataType::FluidResVol
tmp_values[6] = get("GWCT"); //WellProdDataType::WaterCut
tmp_values[7] = get("GGOR"); //WellProdDataType::GasOilRatio
tmp_values[8] = get("GWPR")/get("GGPR"); //WellProdDataType::WaterGasRatio
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
}
for (const auto& wname: schedule.wellNames(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(wname)) {
continue;
}
const auto& well = schedule.getWell(wname, reportStepNum);
// Ignore injector wells
if (well.isInjector()){
continue;
}
tmp_names[0] = wname;//WellProdDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
const auto& controls = well.productionControls(st);
using CMode = ::Opm::Well::ProducerCMode;
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::ORAT: return "ORAT";
case CMode::WRAT: return "WRAT";
case CMode::GRAT: return "GRAT";
case CMode::LRAT: return "LRAT";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::CRAT: return "CRate";
case CMode::GRUP: return "GRUP";
default:
{
return "none";
}
}
};
tmp_names[1] = fctl(controls.cmode); //WellProdDataType::CTRLMode
tmp_values[0] = well.getHeadI() + 1;//WellProdDataType::WellLocationi
tmp_values[1] = well.getHeadJ() + 1;//WellProdDataType::WellLocationj
tmp_values[2] = get("WOPR"); //WellProdDataType::OilRate
tmp_values[3] = get("WWPR"); //WellProdDataType::WaterRate
tmp_values[4] = get("WGPR"); //WellProdDataType::GasRate
tmp_values[5] = get("WVPR"); //WellProdDataType::FluidResVol
tmp_values[6] = get("WWCT"); //WellProdDataType::WaterCut
tmp_values[7] = get("WGOR"); //WellProdDataType::GasOilRatio
tmp_values[8] = get("WWPR")/get("WGPR"); //WellProdDataType::WaterGasRatio
tmp_values[9] = get("WBHP"); //WellProdDataType::BHP
tmp_values[10] = get("WTHP"); //WellProdDataType::THP
//tmp_values[11] = 0; //WellProdDataType::SteadyStatePI //
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
}
}
}
// write injection report to output
void outputInjLog(size_t reportStepNum, const bool substep, bool forceDisableInjOutput)
{
if (!substep) {
ScalarBuffer tmp_values(WellInjDataType::numWIValues, 0.0);
StringBuffer tmp_names(WellInjDataType::numWINames, "");
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
const auto& st = simulator_.vanguard().summaryState();
const auto& schedule = simulator_.vanguard().schedule();
for (const auto& gname: schedule.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
tmp_values[2] = get("GOIR");//WellInjDataType::OilRate
tmp_values[3] = get("GWIR"); //WellInjDataType::WaterRate
tmp_values[4] = get("GGIR"); //WellInjDataType::GasRate
tmp_values[5] = get("GVIR");//WellInjDataType::FluidResVol
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
}
for (const auto& wname: schedule.wellNames(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(wname)) {
continue;
}
const auto& well = schedule.getWell(wname, reportStepNum);
// Ignore Producer wells
if (well.isProducer()){
continue;
}
tmp_names[0] = wname; //WellInjDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
const auto& controls = well.injectionControls(st);
const auto ctlMode = controls.cmode;
const auto injType = controls.injector_type;
using CMode = ::Opm::Well::InjectorCMode;
using WType = ::Opm::InjectorType;
auto ftype = [](const auto wtype) -> std::string
{
switch (wtype) {
case WType::OIL: return "Oil";
case WType::WATER: return "Wat";
case WType::GAS: return "Gas";
case WType::MULTI: return "Multi";
default:
{
return "";
}
}
};
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::RATE: return "RATE";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::GRUP: return "GRUP";
default:
{
return "";
}
}
};
const auto flowtype = ftype(injType);
const auto flowctl = fctl(ctlMode);
if(flowtype == "Oil") //WellInjDataType::CTRLModeOil
{
if (flowctl == "RATE"){ tmp_names[1] = "ORAT"; }
else { tmp_names[1] = flowctl; }
}
else if (flowtype == "Wat") //WellInjDataType::CTRLModeWat
{
if (flowctl == "RATE"){ tmp_names[3] = "WRAT"; }
else { tmp_names[2] = flowctl; }
}
else if (flowtype == "Gas") //WellInjDataType::CTRLModeGas
{
if (flowctl == "RATE"){ tmp_names[3] = "GRAT"; }
else { tmp_names[3] = flowctl; }
}
tmp_values[0] = well.getHeadI() + 1; //WellInjDataType::wellLocationi
tmp_values[1] = well.getHeadJ() + 1; //WellInjDataType::wellLocationj
tmp_values[2] = get("WOIR"); //WellInjDataType::OilRate
tmp_values[3] = get("WWIR"); //WellInjDataType::WaterRate
tmp_values[4] = get("WGIR"); //WellInjDataType::GasRate
tmp_values[5] = get("WVIR");//WellInjDataType::FluidResVol
tmp_values[6] = get("WBHP"); //WellInjDataType::BHP
tmp_values[7] = get("WTHP"); //WellInjDataType::THP
//tmp_values[8] = 0; //WellInjDataType::SteadyStateII
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
}
}
}
// write cumulative production and injection reports to output
void outputCumLog(size_t reportStepNum, const bool substep, bool forceDisableCumOutput)
{
if (!substep) {
ScalarBuffer tmp_values(WellCumDataType::numWCValues, 0.0);
StringBuffer tmp_names(WellCumDataType::numWCNames, "");
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
const auto& st = simulator_.vanguard().summaryState();
const auto& schedule = simulator_.vanguard().schedule();
for (const auto& gname: schedule.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
tmp_values[2] = get("GOPT"); //WellCumDataType::OilProd
tmp_values[3] = get("GWPT"); //WellCumDataType::WaterProd
tmp_values[4] = get("GGPT"); //WellCumDataType::GasProd
tmp_values[5] = get("GVPT");//WellCumDataType::FluidResVolProd
tmp_values[6] = get("GOIT"); //WellCumDataType::OilInj
tmp_values[7] = get("GWIT"); //WellCumDataType::WaterInj
tmp_values[8] = get("GGIT"); //WellCumDataType::GasInj
tmp_values[9] = get("GVIT");//WellCumDataType::FluidResVolInj
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
}
for (const auto& wname : schedule.wellNames(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(wname)) {
continue;
}
const auto& well = schedule.getWell(wname, reportStepNum);
tmp_names[0] = wname; //WellCumDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
if (well.isInjector()) {
const auto& controls = well.injectionControls(st);
const auto ctlMode = controls.cmode;
const auto injType = controls.injector_type;
using CMode = ::Opm::Well::InjectorCMode;
using WType = ::Opm::InjectorType;
auto ftype = [](const auto wtype) -> std::string
{
switch (wtype) {
case WType::OIL: return "Oil";
case WType::WATER: return "Wat";
case WType::GAS: return "Gas";
case WType::MULTI: return "Multi";
default:
{
return "";
}
}
};
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::RATE: return "RATE";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::GRUP: return "GRUP";
default:
{
return "";
}
}
};
tmp_names[1] = "INJ"; //WellCumDataType::WellType
const auto flowctl = fctl(ctlMode);
if (flowctl == "RATE") //WellCumDataType::WellCTRL
{
const auto flowtype = ftype(injType);
if(flowtype == "Oil"){ tmp_names[2] = "ORAT"; }
else if(flowtype == "Wat"){ tmp_names[2] = "WRAT"; }
else if(flowtype == "Gas"){ tmp_names[2] = "GRAT"; }
}
else
{
tmp_names[2] = flowctl;
}
}
else if (well.isProducer()) {
const auto& controls = well.productionControls(st);
using CMode = ::Opm::Well::ProducerCMode;
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::ORAT: return "ORAT";
case CMode::WRAT: return "WRAT";
case CMode::GRAT: return "GRAT";
case CMode::LRAT: return "LRAT";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::CRAT: return "CRAT";
case CMode::GRUP: return "GRUP";
default:
{
return "none";
}
}
};
tmp_names[1] = "PROD"; //WellProdDataType::CTRLMode
tmp_names[2] = fctl(controls.cmode); //WellProdDataType::CTRLMode
}
tmp_values[0] = well.getHeadI() + 1; //WellCumDataType::wellLocationi
tmp_values[1] = well.getHeadJ() + 1; //WellCumDataType::wellLocationj
tmp_values[2] = get("WOPT"); //WellCumDataType::OilProd
tmp_values[3] = get("WWPT"); //WellCumDataType::WaterProd
tmp_values[4] = get("WGPT"); //WellCumDataType::GasProd
tmp_values[5] = get("WVPT");//WellCumDataType::FluidResVolProd
tmp_values[6] = get("WOIT"); //WellCumDataType::OilInj
tmp_values[7] = get("WWIT"); //WellCumDataType::WaterInj
tmp_values[8] = get("WGIT"); //WellCumDataType::GasInj
tmp_values[9] = get("WVIT");//WellCumDataType::FluidResVolInj
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
}
}
}
void setRestart(const Opm::data::Solution& sol, unsigned elemIdx, unsigned globalDofIndex)
{
Scalar so = 1.0;
if (saturation_[waterPhaseIdx].size() > 0 && sol.has("SWAT")) {
saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex];
so -= sol.data("SWAT")[globalDofIndex];
}
if (saturation_[gasPhaseIdx].size() > 0 && sol.has("SGAS")) {
saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex];
so -= sol.data("SGAS")[globalDofIndex];
}
if (sSol_.size() > 0) {
// keep the SSOL option for backward compatibility
// should be removed after 10.2018 release
if (sol.has("SSOL"))
sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex];
else if (sol.has("SSOLVENT"))
sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex];
so -= sSol_[elemIdx];
}
assert(saturation_[oilPhaseIdx].size() > 0);
saturation_[oilPhaseIdx][elemIdx] = so;
if (oilPressure_.size() > 0 && sol.has("PRESSURE"))
oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex];
if (temperature_.size() > 0 && sol.has("TEMP"))
temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex];
if (rs_.size() > 0 && sol.has("RS"))
rs_[elemIdx] = sol.data("RS")[globalDofIndex];
if (rv_.size() > 0 && sol.has("RV"))
rv_[elemIdx] = sol.data("RV")[globalDofIndex];
if (cPolymer_.size() > 0 && sol.has("POLYMER"))
cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex];
if (cFoam_.size() > 0 && sol.has("FOAM"))
cFoam_[elemIdx] = sol.data("FOAM")[globalDofIndex];
if (cSalt_.size() > 0 && sol.has("SALT"))
cSalt_[elemIdx] = sol.data("SALT")[globalDofIndex];
if (soMax_.size() > 0 && sol.has("SOMAX"))
soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex];
if (pcSwMdcOw_.size() > 0 &&sol.has("PCSWM_OW"))
pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex];
if (krnSwMdcOw_.size() > 0 && sol.has("KRNSW_OW"))
krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex];
if (pcSwMdcGo_.size() > 0 && sol.has("PCSWM_GO"))
pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex];
if (krnSwMdcGo_.size() > 0 && sol.has("KRNSW_GO"))
krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex];
if (ppcw_.size() > 0 && sol.has("PPCW"))
ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex];
}
template <class FluidState>
void assignToFluidState(FluidState& fs, unsigned elemIdx) const
{
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (saturation_[phaseIdx].size() == 0)
continue;
fs.setSaturation(phaseIdx, saturation_[phaseIdx][elemIdx]);
}
if (oilPressure_.size() > 0) {
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
Dune::FieldVector< Scalar, numPhases > pc(0);
const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx);
MaterialLaw::capillaryPressures(pc, matParams, fs);
Opm::Valgrind::CheckDefined(oilPressure_[elemIdx]);
Opm::Valgrind::CheckDefined(pc);
assert(FluidSystem::phaseIsActive(oilPhaseIdx));
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
fs.setPressure(phaseIdx, oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx]));
}
}
if (temperature_.size() > 0)
fs.setTemperature(temperature_[elemIdx]);
if (rs_.size() > 0)
fs.setRs(rs_[elemIdx]);
if (rv_.size() > 0)
fs.setRv(rv_[elemIdx]);
}
void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const
{
if (soMax_.size() > 0)
simulator.problem().setMaxOilSaturation(elemIdx, soMax_[elemIdx]);
if (simulator.problem().materialLawManager()->enableHysteresis()) {
auto matLawManager = simulator.problem().materialLawManager();
if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) {
matLawManager->setOilWaterHysteresisParams(
pcSwMdcOw_[elemIdx],
krnSwMdcOw_[elemIdx],
elemIdx);
}
if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) {
matLawManager->setGasOilHysteresisParams(
pcSwMdcGo_[elemIdx],
krnSwMdcGo_[elemIdx],
elemIdx);
}
}
if (simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT")) {
auto oilWaterScaledEpsInfoDrainage = simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainagePointerReferenceHack(elemIdx);
oilWaterScaledEpsInfoDrainage->maxPcow = ppcw_[elemIdx];
}
}
Scalar getSolventSaturation(unsigned elemIdx) const
{
if (sSol_.size() > elemIdx)
return sSol_[elemIdx];
return 0;
}
Scalar getPolymerConcentration(unsigned elemIdx) const
{
if (cPolymer_.size() > elemIdx)
return cPolymer_[elemIdx];
return 0;
}
Scalar getFoamConcentration(unsigned elemIdx) const
{
if (cFoam_.size() > elemIdx)
return cFoam_[elemIdx];
return 0;
}
Scalar getSaltConcentration(unsigned elemIdx) const
{
if (cSalt_.size() > elemIdx)
return cSalt_[elemIdx];
return 0;
}
const std::map<std::pair<std::string, int>, double>& getBlockData()
{ return blockData_; }
private:
bool isDefunctParallelWell(std::string wname) const
{
if (simulator_.gridView().comm().size()==1)
return false;
const auto& parallelWells = simulator_.vanguard().parallelWells();
std::pair<std::string,bool> value{wname, true};
auto candidate = std::lower_bound(parallelWells.begin(), parallelWells.end(),
value);
return candidate == parallelWells.end() || *candidate != value;
}
bool isIORank_() const
{
const auto& comm = simulator_.gridView().comm();
return comm.rank() == 0;
}
void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx)
{
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
// Fluid in Place calculations
// calculate the pore volume of the current cell. Note that the porosity
// returned by the intensive quantities is defined as the ratio of pore
// space to total cell volume and includes all pressure dependent (->
// rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG,
// PORV, MINPV and friends). Also note that because of this, the porosity
// returned by the intensive quantities can be outside of the physical
// range [0, 1] in pathetic cases.
const double pv =
elemCtx.simulator().model().dofTotalVolume(globalDofIdx)
* intQuants.porosity().value();
if (pressureTimesHydrocarbonVolume_.size() > 0 && pressureTimesPoreVolume_.size() > 0) {
assert(hydrocarbonPoreVolume_.size() == pressureTimesHydrocarbonVolume_.size());
assert(fip_[Opm::Inplace::Phase::PoreVolume].size() == pressureTimesPoreVolume_.size());
fip_[Opm::Inplace::Phase::PoreVolume][globalDofIdx] = pv;
Scalar hydrocarbon = 0.0;
if (FluidSystem::phaseIsActive(oilPhaseIdx))
hydrocarbon += Opm::getValue(fs.saturation(oilPhaseIdx));
if (FluidSystem::phaseIsActive(gasPhaseIdx))
hydrocarbon += Opm::getValue(fs.saturation(gasPhaseIdx));
hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
pressureTimesPoreVolume_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)) * pv;
pressureTimesHydrocarbonVolume_[globalDofIdx] = pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon;
}
}
if (computeFip_) {
Scalar fip[FluidSystem::numPhases];
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
fip[phaseIdx] = 0.0;
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const double b = Opm::getValue(fs.invB(phaseIdx));
const double s = Opm::getValue(fs.saturation(phaseIdx));
fip[phaseIdx] = b * s * pv;
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[Opm::Inplace::Phase::OIL].size() > 0)
fip_[Opm::Inplace::Phase::OIL][globalDofIdx] = fip[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[Opm::Inplace::Phase::GAS].size() > 0)
fip_[Opm::Inplace::Phase::GAS][globalDofIdx] = fip[gasPhaseIdx];
if (FluidSystem::phaseIsActive(waterPhaseIdx) && fip_[Opm::Inplace::Phase::WATER].size() > 0)
fip_[Opm::Inplace::Phase::WATER][globalDofIdx] = fip[waterPhaseIdx];
// Store the pure oil and gas Fip
if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[Opm::Inplace::Phase::OilInLiquidPhase].size() > 0)
fip_[Opm::Inplace::Phase::OilInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[Opm::Inplace::Phase::GasInGasPhase].size() > 0)
fip_[Opm::Inplace::Phase::GasInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
// Gas dissolved in oil and vaporized oil
Scalar gasInPlaceLiquid = Opm::getValue(fs.Rs()) * fip[oilPhaseIdx];
Scalar oilInPlaceGas = Opm::getValue(fs.Rv()) * fip[gasPhaseIdx];
if (fip_[Opm::Inplace::Phase::GasInLiquidPhase].size() > 0)
fip_[Opm::Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
if (fip_[Opm::Inplace::Phase::OilInGasPhase].size() > 0)
fip_[Opm::Inplace::Phase::OilInGasPhase][globalDofIdx] = oilInPlaceGas;
// Add dissolved gas and vaporized oil to total Fip
if (fip_[Opm::Inplace::Phase::OIL].size() > 0)
fip_[Opm::Inplace::Phase::OIL][globalDofIdx] += oilInPlaceGas;
if (fip_[Opm::Inplace::Phase::GAS].size() > 0)
fip_[Opm::Inplace::Phase::GAS][globalDofIdx] += gasInPlaceLiquid;
}
}
}
void createLocalRegion_(std::vector<int>& region)
{
ElementContext elemCtx(simulator_);
ElementIterator elemIt = simulator_.gridView().template begin</*codim=*/0>();
const ElementIterator& elemEndIt = simulator_.gridView().template end</*codim=*/0>();
size_t elemIdx = 0;
for (; elemIt != elemEndIt; ++elemIt, ++elemIdx) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
region[elemIdx] = 0;
}
}
// Sum Fip values over regions.
ScalarBuffer regionSum(const ScalarBuffer& property, const std::vector<int>& regionId, size_t maxNumberOfRegions) const
{
ScalarBuffer totals(maxNumberOfRegions, 0.0);
if (property.empty())
return totals;
assert(regionId.size() == property.size());
for (size_t j = 0; j < regionId.size(); ++j) {
const int regionIdx = regionId[j] - 1;
// the cell is not attributed to any region. ignore it!
if (regionIdx < 0)
continue;
assert(regionIdx < static_cast<int>(maxNumberOfRegions));
totals[regionIdx] += property[j];
}
const auto& comm = simulator_.gridView().comm();
for (size_t i = 0; i < maxNumberOfRegions; ++i)
totals[i] = comm.sum(totals[i]);
return totals;
}
ScalarBuffer pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon, const ScalarBuffer& pvHydrocarbon, const ScalarBuffer& pressurePv, const ScalarBuffer& pv, bool hydrocarbon) const
{
size_t size = pressurePvHydrocarbon.size();
assert(pvHydrocarbon.size() == size);
assert(pressurePv.size() == size);
assert(pv.size() == size);
ScalarBuffer fraction(size, 0.0);
for (size_t i = 0; i < size; ++i) {
fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon);
}
return fraction;
}
Scalar pressureAverage_(const Scalar& pressurePvHydrocarbon, const Scalar& pvHydrocarbon, const Scalar& pressurePv, const Scalar& pv, bool hydrocarbon) const
{
if (pvHydrocarbon > 1e-10 && hydrocarbon)
return pressurePvHydrocarbon / pvHydrocarbon;
return pressurePv / pv;
}
void fipUnitConvert_(std::unordered_map<Opm::Inplace::Phase, Scalar>& fip) const
{
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
fip[Opm::Inplace::Phase::WATER] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::WATER], Opm::unit::stb);
fip[Opm::Inplace::Phase::OIL] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::OIL], Opm::unit::stb);
fip[Opm::Inplace::Phase::OilInLiquidPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::OilInLiquidPhase], Opm::unit::stb);
fip[Opm::Inplace::Phase::OilInGasPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::OilInGasPhase], Opm::unit::stb);
fip[Opm::Inplace::Phase::GAS] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::GAS], 1000*Opm::unit::cubic(Opm::unit::feet));
fip[Opm::Inplace::Phase::GasInLiquidPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::GasInLiquidPhase], 1000*Opm::unit::cubic(Opm::unit::feet));
fip[Opm::Inplace::Phase::GasInGasPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::GasInGasPhase], 1000*Opm::unit::cubic(Opm::unit::feet));
fip[Opm::Inplace::Phase::PoreVolume] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::PoreVolume], Opm::unit::stb);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
Scalar scc = Opm::unit::cubic(Opm::prefix::centi * Opm::unit::meter); //standard cubic cm.
fip[Opm::Inplace::Phase::WATER] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::WATER], scc);
fip[Opm::Inplace::Phase::OIL] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::OIL], scc);
fip[Opm::Inplace::Phase::OilInLiquidPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::OilInLiquidPhase], scc);
fip[Opm::Inplace::Phase::OilInGasPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::OilInGasPhase], scc);
fip[Opm::Inplace::Phase::GAS] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::GAS], scc);
fip[Opm::Inplace::Phase::GasInLiquidPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::GasInLiquidPhase], scc);
fip[Opm::Inplace::Phase::GasInGasPhase] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::GasInGasPhase], scc);
fip[Opm::Inplace::Phase::PoreVolume] = Opm::unit::convert::to(fip[Opm::Inplace::Phase::PoreVolume], scc);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
// nothing to do
}
else {
throw std::runtime_error("Unsupported unit type for fluid in place output.");
}
}
void pressureUnitConvert_(Scalar& pav) const
{
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
pav = Opm::unit::convert::to(pav, Opm::unit::psia);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
pav = Opm::unit::convert::to(pav, Opm::unit::barsa);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
pav = Opm::unit::convert::to(pav, Opm::unit::atm);
}
else {
throw std::runtime_error("Unsupported unit type for fluid in place output.");
}
}
void outputRegionFluidInPlace_(std::unordered_map<Opm::Inplace::Phase, Scalar> oip,
std::unordered_map<Opm::Inplace::Phase, Scalar> cip,
const Scalar& pav, const int reg = 0) const
{
if (forceDisableFipOutput_)
return;
// don't output FIPNUM report if the region has no porv.
if (cip[Opm::Inplace::Phase::PoreVolume] == 0)
return;
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
std::ostringstream ss;
if (reg == 0) {
ss << " ===================================================\n"
<< " : Field Totals :\n";
}
else {
ss << " ===================================================\n"
<< " : FIPNUM report region "
<< std::setw(2) << reg << " :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[Opm::Inplace::Phase::PoreVolume] << " RM3 :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Porv volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[Opm::Inplace::Phase::PoreVolume] << " RB :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Pore volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
}
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
<< ":Currently in place :" << std::setw(14) << cip[Opm::Inplace::Phase::OilInLiquidPhase] << std::setw(14) << cip[Opm::Inplace::Phase::OilInGasPhase] << std::setw(14) << cip[Opm::Inplace::Phase::OIL] << ":"
<< std::setw(13) << cip[Opm::Inplace::Phase::WATER] << " :" << std::setw(14) << (cip[Opm::Inplace::Phase::GasInGasPhase]) << std::setw(14) << cip[Opm::Inplace::Phase::GasInLiquidPhase] << std::setw(14) << cip[Opm::Inplace::Phase::GAS] << ":\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
<< ":Originally in place :" << std::setw(14) << oip[Opm::Inplace::Phase::OilInLiquidPhase] << std::setw(14) << oip[Opm::Inplace::Phase::OilInGasPhase] << std::setw(14) << oip[Opm::Inplace::Phase::OIL] << ":"
<< std::setw(13) << oip[Opm::Inplace::Phase::WATER] << " :" << std::setw(14) << oip[Opm::Inplace::Phase::GasInGasPhase] << std::setw(14) << oip[Opm::Inplace::Phase::GasInLiquidPhase] << std::setw(14) << oip[Opm::Inplace::Phase::GAS] << ":\n"
<< ":========================:==========================================:================:==========================================:\n";
Opm::OpmLog::note(ss.str());
}
void outputProductionReport_(const ScalarBuffer& wellProd, const StringBuffer& wellProdNames, const bool forceDisableProdOutput)
{
if(forceDisableProdOutput)
return;
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
std::ostringstream ss;
if (wellProdNames[WellProdDataType::WellName].empty()) {
ss << "======================================================= PRODUCTION REPORT =======================================================\n"//=================== \n"
<< ": WELL : LOCATION :CTRL: OIL : WATER : GAS : FLUID : WATER : GAS/OIL : WAT/GAS : BHP OR : THP OR :\n"// STEADY-ST PI :\n"
<< ": NAME : (I,J,K) :MODE: RATE : RATE : RATE : RES.VOL. : CUT : RATIO : RATIO : CON.PR.: BLK.PR.:\n";// OR POTN OF PREF. PH:\n";
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : SCM/SCM : SCM/SCM : SCM/SCM : BARSA : BARSA :\n";// :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : : MSCF/STB : STB/MSCF : PSIA : PSIA :\n";// :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : : SCC/HR : SCC/HR : SCC/HR : RCC : SCC/SCC : SCC/SCC : SCC/SCC : ATMA : ATMA :\n";// :\n";
}
ss << "=================================================================================================================================\n";//=================== \n";
}
else {
if (wellProd[WellProdDataType::WellLocationi] < 1) {
ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(11) << "" << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << "" << ":" << std::setw(8) << "" << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n"
}
else {
ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(5) << wellProd[WellProdDataType::WellLocationi] << "," << std::setw(5) << wellProd[WellProdDataType::WellLocationj] << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << wellProd[WellProdDataType::BHP] << ":" << std::setw(8) << wellProd[WellProdDataType::THP] << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n"
}
ss << ":"<< std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (5) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (11) << ":" << std::setfill ('-') << std::setw (13) << ":" << std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (9) << ":" << "\n";
}
Opm::OpmLog::note(ss.str());
}
void outputInjectionReport_(const ScalarBuffer& wellInj, const StringBuffer& wellInjNames, const bool forceDisableInjOutput)
{
if(forceDisableInjOutput)
return;
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
std::ostringstream ss;
if (wellInjNames[WellInjDataType::WellName].empty()) {
ss << "=================================================== INJECTION REPORT ========================================\n"//===================== \n"
<< ": WELL : LOCATION : CTRL : CTRL : CTRL : OIL : WATER : GAS : FLUID : BHP OR : THP OR :\n"// STEADY-ST II :\n"
<< ": NAME : (I,J,K) : MODE : MODE : MODE : RATE : RATE : RATE : RES.VOL. : CON.PR.: BLK.PR.:\n";// OR POTENTIAL :\n";
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : OIL : WAT : GAS : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : BARSA : BARSA :\n";// :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : OIL : WAT : GAS : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : PSIA : PSIA :\n";// :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : OIL : WAT : GAS : SCC/HR : SCC/HR : SCC/HR : RCC/HR : ATMA : ATMA :\n";// :\n";
}
ss << "==============================================================================================================\n";//===================== \n";
}
else {
if (wellInj[WellInjDataType::WellLocationi] < 1) {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< "" << ":" << std::setw(8)<< "" << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
}
else {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(5) << wellInj[WellInjDataType::WellLocationi] << "," << std::setw(5) << wellInj[WellInjDataType::WellLocationj] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< wellInj[WellInjDataType::BHP] << ":" << std::setw(8)<< wellInj[WellInjDataType::THP] << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
}
ss << ":--------:-----------:------:------:------:------------:----------:-----------:-----------:--------:--------: \n";//--------------------:\n";
}
Opm::OpmLog::note(ss.str());
}
void outputCumulativeReport_(const ScalarBuffer& wellCum, const StringBuffer& wellCumNames, const bool forceDisableCumOutput)
{
if(forceDisableCumOutput)
return;
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
std::ostringstream ss;
if (wellCumNames[WellCumDataType::WellName].empty()) {
ss << "=================================================== CUMULATIVE PRODUCTION/INJECTION REPORT =========================================\n"
<< ": WELL : LOCATION : WELL :CTRL: OIL : WATER : GAS : Prod : OIL : WATER : GAS : INJ :\n"
<< ": NAME : (I,J,K) : TYPE :MODE: PROD : PROD : PROD : RES.VOL. : INJ : INJ : INJ : RES.VOL. :\n";
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : : : MSCM : MSCM : MMSCM : MRCM : MSCM : MSCM : MMSCM : MRCM :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : : : MSTB : MSTB : MMSCF : MRB : MSTB : MSTB : MMSCF : MRB :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : : : MSCC : MSCC : MMSCC : MRCC : MSCC : MSCC : MMSCC : MRCC :\n";
}
ss << "====================================================================================================================================\n";
}
else {
if (wellCum[WellCumDataType::WellLocationi] < 1) {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n";
}
else {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(5) << wellCum[WellCumDataType::WellLocationi] << "," << std::setw(5) << wellCum[WellCumDataType::WellLocationj] << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n";
}
ss << ":--------:-----------:--------:----:------------:----------:-----------:-----------:------------:----------:-----------:-----------: \n";
}
Opm::OpmLog::note(ss.str());
}
std::string WPEnumToString_(int i)
{
typedef typename WellProdDataType::WPId WPId;
switch(static_cast<WPId>(i))
{
case WellProdDataType::WellName: return "WName";
case WellProdDataType::WellLocationi: return "WLi";
case WellProdDataType::WellLocationj: return "WLj";
case WellProdDataType::CTRLMode: return "CTRL";
case WellProdDataType::OilRate: return "OR";
case WellProdDataType::WaterRate: return "WR";
case WellProdDataType::GasRate: return "GR";
case WellProdDataType::FluidResVol: return "FRV";
case WellProdDataType::WaterCut: return "WC";
case WellProdDataType::GasOilRatio: return "GOR";
case WellProdDataType::WatGasRatio: return "WGR";
case WellProdDataType::BHP: return "BHP";
case WellProdDataType::THP: return "THP";
case WellProdDataType::SteadyStatePI: return "SteadyStatePI";
}
return "ERROR";
}
std::string WIEnumToString_(int i)
{
typedef typename WellInjDataType::WIId WIId;
switch(static_cast<WIId>(i))
{
case WellInjDataType::WellName: return "WName";
case WellInjDataType::WellLocationi: return "WLi";
case WellInjDataType::WellLocationj: return "WLj";
case WellInjDataType::CTRLModeOil: return "CTRLo";
case WellInjDataType::CTRLModeWat: return "CTRLw";
case WellInjDataType::CTRLModeGas: return "CTRLg";
case WellInjDataType::OilRate: return "OR";
case WellInjDataType::WaterRate: return "WR";
case WellInjDataType::GasRate: return "GR";
case WellInjDataType::FluidResVol: return "FRV";
case WellInjDataType::BHP: return "BHP";
case WellInjDataType::THP: return "THP";
case WellInjDataType::SteadyStateII: return "SteadyStateII";
}
return "ERROR";
}
std::string WCEnumToString_(int i)
{
typedef typename WellCumDataType::WCId WCId;
switch(static_cast<WCId>(i))
{
case WellCumDataType::WellName: return "WName";
case WellCumDataType::WellLocationi: return "WLi";
case WellCumDataType::WellLocationj: return "WLj";
case WellCumDataType::WellType: return "WType";
case WellCumDataType::WellCTRL: return "WCTRL";
case WellCumDataType::OilProd: return "OP";
case WellCumDataType::WaterProd: return "WP";
case WellCumDataType::GasProd: return "GP";
case WellCumDataType::FluidResVolProd: return "FRVP";
case WellCumDataType::OilInj: return "OI";
case WellCumDataType::WaterInj: return "WI";
case WellCumDataType::GasInj: return "GI";
case WellCumDataType::FluidResVolInj: return "FRVI";
}
return "ERROR";
}
bool isOutputCreationDirective_(const std::string& keyword) const
{
return (keyword == "BASIC") || (keyword == "FREQ")
|| (keyword == "RESTART") // From RPTSCHED
|| (keyword == "SAVE") || (keyword == "SFREQ"); // Not really supported
}
const Simulator& simulator_;
bool outputFipRestart_;
bool computeFip_;
bool forceDisableFipOutput_;
ScalarBuffer saturation_[numPhases];
ScalarBuffer oilPressure_;
ScalarBuffer temperature_;
ScalarBuffer gasDissolutionFactor_;
ScalarBuffer oilVaporizationFactor_;
ScalarBuffer gasFormationVolumeFactor_;
ScalarBuffer saturatedOilFormationVolumeFactor_;
ScalarBuffer oilSaturationPressure_;
ScalarBuffer rs_;
ScalarBuffer rv_;
ScalarBuffer invB_[numPhases];
ScalarBuffer density_[numPhases];
ScalarBuffer viscosity_[numPhases];
ScalarBuffer relativePermeability_[numPhases];
ScalarBuffer sSol_;
ScalarBuffer extboX_;
ScalarBuffer extboY_;
ScalarBuffer extboZ_;
ScalarBuffer mFracOil_;
ScalarBuffer mFracGas_;
ScalarBuffer mFracCo2_;
ScalarBuffer cPolymer_;
ScalarBuffer cFoam_;
ScalarBuffer cSalt_;
ScalarBuffer soMax_;
ScalarBuffer pcSwMdcOw_;
ScalarBuffer krnSwMdcOw_;
ScalarBuffer pcSwMdcGo_;
ScalarBuffer krnSwMdcGo_;
ScalarBuffer ppcw_;
ScalarBuffer bubblePointPressure_;
ScalarBuffer dewPointPressure_;
ScalarBuffer rockCompPorvMultiplier_;
ScalarBuffer rockCompTransMultiplier_;
ScalarBuffer swMax_;
ScalarBuffer overburdenPressure_;
ScalarBuffer minimumOilPressure_;
std::vector<int> failedCellsPb_;
std::vector<int> failedCellsPd_;
std::unordered_map<std::string, std::vector<int>> regions_;
std::unordered_map<Opm::Inplace::Phase, ScalarBuffer> fip_;
std::optional<Opm::Inplace> initialInplace_;
std::vector<Opm::SummaryConfigNode> RPRNodes_;
std::vector<Opm::SummaryConfigNode> RPRPNodes_;
std::unordered_map<Opm::Inplace::Phase, std::vector<Opm::SummaryConfigNode>> regionNodes_;
ScalarBuffer hydrocarbonPoreVolume_;
ScalarBuffer pressureTimesPoreVolume_;
ScalarBuffer pressureTimesHydrocarbonVolume_;
std::map<std::pair<std::string, int>, double> blockData_;
std::map<size_t, Scalar> oilConnectionPressures_;
std::map<size_t, Scalar> waterConnectionSaturations_;
std::map<size_t, Scalar> gasConnectionSaturations_;
std::vector<ScalarBuffer> tracerConcentrations_;
};
} // namespace Opm
#endif