opm-simulators/opm/autodiff/BlackoilWellModel_impl.hpp
Kai Bao 60e5a95972 only using Wells for determination of the RESV well
One of them is redundant, we do not need both of them.
2019-01-07 12:14:33 +01:00

1631 lines
57 KiB
C++

namespace Opm {
template<typename TypeTag>
BlackoilWellModel<TypeTag>::
BlackoilWellModel(Simulator& ebosSimulator)
: ebosSimulator_(ebosSimulator)
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
{
terminal_output_ = false;
if (ebosSimulator.gridView().comm().rank() == 0)
terminal_output_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
init(const Opm::EclipseState& eclState, const Opm::Schedule& schedule)
{
gravity_ = ebosSimulator_.problem().gravity()[2];
extractLegacyCellPvtRegionIndex_();
extractLegacyDepth_();
phase_usage_ = phaseUsageFromDeck(eclState);
const auto& gridView = ebosSimulator_.gridView();
// calculate the number of elements of the compressed sequential grid. this needs
// to be done in two steps because the dune communicator expects a reference as
// argument for sum()
number_of_cells_ = gridView.size(/*codim=*/0);
global_nc_ = gridView.comm().sum(number_of_cells_);
gravity_ = ebosSimulator_.problem().gravity()[2];
extractLegacyCellPvtRegionIndex_();
extractLegacyDepth_();
initial_step_ = true;
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& cartDims = Opm::UgGridHelpers::cartDims(grid);
setupCartesianToCompressed_(Opm::UgGridHelpers::globalCell(grid),
cartDims[0]*cartDims[1]*cartDims[2]);
// add the eWoms auxiliary module for the wells to the list
ebosSimulator_.model().addAuxiliaryModule(this);
is_cell_perforated_.resize(number_of_cells_, false);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addNeighbors(std::vector<NeighborSet>& neighbors) const
{
if (!param_.matrix_add_well_contributions_) {
return;
}
// Create cartesian to compressed mapping
int last_time_step = schedule().getTimeMap().size() - 1;
const auto& schedule_wells = schedule().getWells();
const auto& cartesianSize = Opm::UgGridHelpers::cartDims(grid());
// initialize the additional cell connections introduced by wells.
for (const auto well : schedule_wells)
{
std::vector<int> wellCells;
// All possible connections of the well
const auto& connectionSet = well->getConnections(last_time_step);
wellCells.reserve(connectionSet.size());
for ( size_t c=0; c < connectionSet.size(); c++ )
{
const auto& connection = connectionSet.get(c);
int i = connection.getI();
int j = connection.getJ();
int k = connection.getK();
int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k);
int compressed_idx = cartesian_to_compressed_.at(cart_grid_idx);
if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells.
wellCells.push_back(compressed_idx);
}
}
for (int cellIdx : wellCells) {
neighbors[cellIdx].insert(wellCells.begin(),
wellCells.end());
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
linearize(SparseMatrixAdapter& mat , GlobalEqVector& res)
{
if (!localWellsActive())
return;
// we don't what to add the schur complement
// here since it affects the getConvergence method
/*
for (const auto& well: well_container_) {
if (param_.matrix_add_well_contributions_)
well->addWellContributions(mat);
// applying the well residual to reservoir residuals
// r = r - duneC_^T * invDuneD_ * resWell_
well->apply(res);
}
*/
}
/// Return true if any well has a THP constraint.
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
hasTHPConstraints() const
{
for (const auto& well : well_container_) {
if (well->wellHasTHPConstraints()) {
return true;
}
}
return false;
}
/// Return true if the well was found and shut.
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
forceShutWellByNameIfPredictionMode(const std::string& wellname,
const double simulation_time)
{
// Only add the well to the closed list on the
// process that owns it.
int well_was_shut = 0;
for (const auto& well : well_container_) {
if (well->name() == wellname) {
if (well->underPredictionMode()) {
wellTestState_.addClosedWell(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time);
well_was_shut = 1;
}
break;
}
}
// Communicate across processes if a well was shut.
well_was_shut = ebosSimulator_.vanguard().grid().comm().max(well_was_shut);
// Only log a message on the output rank.
if (terminal_output_ && well_was_shut) {
const std::string msg = "Well " + wellname
+ " will be shut because it cannot get converged.";
OpmLog::info(msg);
}
return (well_was_shut == 1);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginReportStep(const int timeStepIdx)
{
const Grid& grid = ebosSimulator_.vanguard().grid();
const auto& defunct_well_names = ebosSimulator_.vanguard().defunctWellNames();
const auto& eclState = ebosSimulator_.vanguard().eclState();
wells_ecl_ = schedule().getWells(timeStepIdx);
// Create wells and well state.
// Pass empty dynamicListEconLimited class
// The closing of wells due to limites is
// handled by the wellTestState class
DynamicListEconLimited dynamic_list_econ_limited;
wells_manager_.reset( new WellsManager (eclState,
schedule(),
timeStepIdx,
Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::dimensions(grid),
Opm::UgGridHelpers::cell2Faces(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
dynamic_list_econ_limited,
grid.comm().size() > 1,
defunct_well_names) );
// Wells are active if they are active wells on at least
// one process.
wells_active_ = localWellsActive() ? 1 : 0;
wells_active_ = grid.comm().max(wells_active_);
// The well state initialize bhp with the cell pressure in the top cell.
// We must therefore provide it with updated cell pressures
size_t nc = number_of_cells_;
std::vector<double> cellPressures(nc, 0.0);
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
cellPressures[cellIdx] = p;
}
well_state_.init(wells(), cellPressures, wells_ecl_, timeStepIdx, &previous_well_state_, phase_usage_);
// handling MS well related
if (param_.use_multisegment_well_) { // if we use MultisegmentWell model
for (const auto& well : wells_ecl_) {
// TODO: this is acutally not very accurate, because sometimes a deck just claims a MS well
// while keep the well shut. More accurately, we should check if the well exisits in the Wells
// structure here
if (well->isMultiSegment(timeStepIdx) ) { // there is one well is MS well
well_state_.initWellStateMSWell(wells(), wells_ecl_, timeStepIdx, phase_usage_, previous_well_state_);
break;
}
}
}
// update the previous well state. This is used to restart failed steps.
previous_well_state_ = well_state_;
// Compute reservoir volumes for RESV controls.
rateConverter_.reset(new RateConverterType (phase_usage_,
std::vector<int>(number_of_cells_, 0)));
computeRESV(timeStepIdx);
// update VFP properties
vfp_properties_.reset (new VFPProperties<VFPInjProperties,VFPProdProperties> (
schedule().getVFPInjTables(timeStepIdx),
schedule().getVFPProdTables(timeStepIdx)) );
}
// called at the beginning of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginTimeStep() {
well_state_ = previous_well_state_;
const int reportStepIdx = ebosSimulator_.episodeIndex();
const double simulationTime = ebosSimulator_.time();
// test wells
wellTesting(reportStepIdx, simulationTime);
// create the well container
well_container_ = createWellContainer(reportStepIdx);
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
for (auto& well : well_container_) {
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
}
// update the updated cell flag
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
for (auto& well : well_container_) {
well->updatePerforatedCell(is_cell_perforated_);
}
// calculate the efficiency factors for each well
calculateEfficiencyFactors();
if (has_polymer_)
{
const Grid& grid = ebosSimulator_.vanguard().grid();
if (PolymerModule::hasPlyshlog() || GET_PROP_VALUE(TypeTag, EnablePolymerMW) ) {
computeRepRadiusPerfLength(grid);
}
}
for (auto& well : well_container_) {
well->setVFPProperties(vfp_properties_.get());
}
// Close completions due to economical reasons
for (auto& well : well_container_) {
well->closeCompletions(wellTestState_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx, const double simulationTime) {
const auto& wtest_config = schedule().wtestConfig(timeStepIdx);
if (wtest_config.size() == 0) { // there is no WTEST request
return;
}
// average B factors are required for the convergence checking of well equations
// Note: this must be done on all processes, even those with
// no wells needing testing, otherwise we will have locking.
std::vector< Scalar > B_avg(numComponents(), Scalar() );
computeAverageFormationFactor(B_avg);
wellhelpers::WellSwitchingLogger logger;
const auto& wellsForTesting = wellTestState_.updateWell(wtest_config, simulationTime);
for (const auto& testWell : wellsForTesting) {
const std::string& well_name = testWell.first;
// this is the well we will test
WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx);
// some preparation before the well can be used
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
const WellNode& well_node = wellCollection().findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
well->setWellEfficiencyFactor(well_efficiency_factor);
well->setVFPProperties(vfp_properties_.get());
const WellTestConfig::Reason testing_reason = testWell.second;
well->wellTesting(ebosSimulator_, B_avg, simulationTime, timeStepIdx, terminal_output_,
testing_reason, well_state_, wellTestState_, logger);
}
}
// called at the end of a report step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
endReportStep() {
}
// called at the end of a report step
template<typename TypeTag>
const SimulatorReport&
BlackoilWellModel<TypeTag>::
lastReport() const {return last_report_; }
// called at the end of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
timeStepSucceeded(const double& simulationTime, const double dt) {
// TODO: when necessary
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
for (const auto& well : well_container_) {
well->calculateReservoirRates(well_state_);
if (GET_PROP_VALUE(TypeTag, EnablePolymerMW) && well->wellType() == INJECTOR) {
well->updateWaterThroughput(dt, well_state_);
}
}
updateWellTestState(simulationTime, wellTestState_);
// calculate the well potentials for output
// TODO: when necessary
try
{
std::vector<double> well_potentials;
computeWellPotentials(well_potentials);
}
catch ( std::runtime_error& e )
{
const std::string msg = "A zero well potential is returned for output purposes. ";
OpmLog::warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
}
previous_well_state_ = well_state_;
}
template<typename TypeTag>
template <class Context>
void
BlackoilWellModel<TypeTag>::
computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
rate = 0;
int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!is_cell_perforated_[elemIdx])
return;
for (const auto& well : well_container_)
well->addCellRates(rate, elemIdx);
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
well(const std::string& wellName) const
{
for (const auto& well : well_container_) {
if (well->name() == wellName) {
return well;
}
}
OPM_THROW(std::invalid_argument, "The well with name " + wellName + " is not in the well Container");
return nullptr;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initFromRestartFile(const RestartValue& restartValues)
{
// gives a dummy dynamic_list_econ_limited
DynamicListEconLimited dummyListEconLimited;
const auto& defunctWellNames = ebosSimulator_.vanguard().defunctWellNames();
WellsManager wellsmanager(eclState(),
schedule(),
// The restart step value is used to identify wells present at the given
// time step. Wells that are added at the same time step as RESTART is initiated
// will not be present in a restart file. Use the previous time step to retrieve
// wells that have information written to the restart file.
std::max(eclState().getInitConfig().getRestartStep() - 1, 0),
Opm::UgGridHelpers::numCells(grid()),
Opm::UgGridHelpers::globalCell(grid()),
Opm::UgGridHelpers::cartDims(grid()),
Opm::UgGridHelpers::dimensions(grid()),
Opm::UgGridHelpers::cell2Faces(grid()),
Opm::UgGridHelpers::beginFaceCentroids(grid()),
dummyListEconLimited,
grid().comm().size() > 1,
defunctWellNames);
const Wells* wells = wellsmanager.c_wells();
const int nw = wells->number_of_wells;
if (nw > 0) {
const auto phaseUsage = phaseUsageFromDeck(eclState());
const size_t numCells = Opm::UgGridHelpers::numCells(grid());
well_state_.resize(wells, numCells, phaseUsage); // Resize for restart step
wellsToState(restartValues.wells, phaseUsage, well_state_);
previous_well_state_ = well_state_;
}
initial_step_ = false;
}
template<typename TypeTag>
std::vector<typename BlackoilWellModel<TypeTag>::WellInterfacePtr >
BlackoilWellModel<TypeTag>::
createWellContainer(const int time_step)
{
std::vector<WellInterfacePtr> well_container;
const int nw = numWells();
if (nw > 0) {
well_container.reserve(nw);
// With the following way, it will have the same order with wells struct
// Hopefully, it can generate the same residual history with master branch
for (int w = 0; w < nw; ++w) {
const std::string well_name = std::string(wells()->name[w]);
// finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl_.size();
int index_well = 0;
for (; index_well < nw_wells_ecl; ++index_well) {
if (well_name == wells_ecl_[index_well]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl_[index_well];
// A new WCON keywords can re-open a well that was closed/shut due to Physical limit
if ( wellTestState_.hasWell(well_name, WellTestConfig::Reason::PHYSICAL ) ) {
// TODO: more checking here, to make sure this standard more specific and complete
// maybe there is some WCON keywords will not open the well
if (well_state_.effectiveEventsOccurred(w)) {
if (wellTestState_.lastTestTime(well_name) == ebosSimulator_.time()) {
// The well was shut this timestep, we are most likely retrying
// a timestep without the well in question, after it caused
// repeated timestep cuts. It should therefore not be opened,
// even if it was new or received new targets this report step.
well_state_.setEffectiveEventsOccurred(w, false);
} else {
wellTestState_.openWell(well_name);
}
}
}
// TODO: should we do this for all kinds of closing reasons?
// something like wellTestState_.hasWell(well_name)?
if ( wellTestState_.hasWell(well_name, WellTestConfig::Reason::ECONOMIC) ||
wellTestState_.hasWell(well_name, WellTestConfig::Reason::PHYSICAL) ) {
if( well_ecl->getAutomaticShutIn() ) {
// shut wells are not added to the well container
// TODO: make a function from well_state side to handle the following
well_state_.thp()[w] = 0.;
well_state_.bhp()[w] = 0.;
const int np = numPhases();
for (int p = 0; p < np; ++p) {
well_state_.wellRates()[np * w + p] = 0.;
}
continue;
} else {
// close wells are added to the container but marked as closed
struct WellControls* well_controls = wells()->ctrls[w];
well_controls_stop_well(well_controls);
}
}
// Use the pvtRegionIdx from the top cell
const int well_cell_top = wells()->well_cells[wells()->well_connpos[w]];
const int pvtreg = pvt_region_idx_[well_cell_top];
if ( !well_ecl->isMultiSegment(time_step) || !param_.use_multisegment_well_) {
if ( GET_PROP_VALUE(TypeTag, EnablePolymerMW) && well_ecl->isInjector(time_step) ) {
well_container.emplace_back(new StandardWellV<TypeTag>(well_ecl, time_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
} else {
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
}
} else {
well_container.emplace_back(new MultisegmentWell<TypeTag>(well_ecl, time_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
}
}
}
return well_container;
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
createWellForWellTest(const std::string& well_name,
const int report_step) const
{
// Finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl_.size();
int index_well_ecl = 0;
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
if (well_name == wells_ecl_[index_well_ecl]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well_ecl == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl_[index_well_ecl];
// Finding the location of the well in wells struct.
const int nw = numWells();
int well_index_wells = -999;
for (int w = 0; w < nw; ++w) {
if (well_name == std::string(wells()->name[w])) {
well_index_wells = w;
break;
}
}
if (well_index_wells < 0) {
OPM_THROW(std::logic_error, "Could not find the well " << well_name << " in the well struct ");
}
// Use the pvtRegionIdx from the top cell
const int well_cell_top = wells()->well_cells[wells()->well_connpos[well_index_wells]];
const int pvtreg = pvt_region_idx_[well_cell_top];
if ( !well_ecl->isMultiSegment(report_step) || !param_.use_multisegment_well_) {
return WellInterfacePtr(new StandardWell<TypeTag>(well_ecl, report_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
} else {
return WellInterfacePtr(new MultisegmentWell<TypeTag>(well_ecl, report_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assemble(const int iterationIdx,
const double dt)
{
last_report_ = SimulatorReport();
if ( ! wellsActive() ) {
return;
}
updatePerforationIntensiveQuantities();
if (iterationIdx == 0) {
calculateExplicitQuantities();
prepareTimeStep();
}
updateWellControls();
// Set the well primary variables based on the value of well solutions
initPrimaryVariablesEvaluation();
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
last_report_ = solveWellEq(dt);
if (initial_step_) {
// update the explicit quantities to get the initial fluid distribution in the well correct.
calculateExplicitQuantities();
prepareTimeStep();
last_report_ = solveWellEq(dt);
initial_step_ = false;
}
// TODO: should we update the explicit related here again, or even prepareTimeStep().
// basically, this is a more updated state from the solveWellEq based on fixed
// reservoir state, will tihs be a better place to inialize the explict information?
}
assembleWellEq(dt);
last_report_.converged = true;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assembleWellEq(const double dt)
{
for (auto& well : well_container_) {
well->assembleWellEq(ebosSimulator_, dt, well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply( BVector& r) const
{
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(r);
}
}
// Ax = A x - C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
// TODO: do we still need localWellsActive()?
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(x, Ax);
}
}
// Ax = Ax - alpha * C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
{
if ( ! localWellsActive() ) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
// scaleAddRes_ = - C D^-1 B x
apply( x, scaleAddRes_ );
// Ax = Ax + alpha * scaleAddRes_
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x)
{
if (!localWellsActive())
return;
for (auto& well : well_container_) {
well->recoverWellSolutionAndUpdateWellState(x, well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
resetWellControlFromState() const
{
for (auto& well : well_container_) {
WellControls* wc = well->wellControls();
well_controls_set_current( wc, well_state_.currentControls()[well->indexOfWell()]);
}
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
wellsActive() const
{
return wells_active_;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
localWellsActive() const
{
return numWells() > 0;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (auto& well : well_container_) {
well->initPrimaryVariablesEvaluation();
}
}
template<typename TypeTag>
SimulatorReport
BlackoilWellModel<TypeTag>::
solveWellEq(const double dt)
{
WellState well_state0 = well_state_;
const int numComp = numComponents();
std::vector< Scalar > B_avg( numComp, Scalar() );
computeAverageFormationFactor(B_avg);
const int max_iter = param_.max_welleq_iter_;
int it = 0;
bool converged;
do {
assembleWellEq(dt);
const auto report = getWellConvergence(B_avg);
converged = report.converged();
// checking whether the group targets are converged
if (wellCollection().groupControlActive()) {
converged = converged && wellCollection().groupTargetConverged(well_state_.wellRates());
}
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
for (auto& well : well_container_) {
well->solveEqAndUpdateWellState(well_state_);
}
}
// updateWellControls uses communication
// Therefore the following is executed if there
// are active wells anywhere in the global domain.
if( wellsActive() )
{
updateWellControls();
initPrimaryVariablesEvaluation();
}
} while (it < max_iter);
if (converged) {
if ( terminal_output_ ) {
OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations");
}
} else {
if ( terminal_output_ ) {
OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations");
}
well_state_ = well_state0;
updatePrimaryVariables();
// also recover the old well controls
for (const auto& well : well_container_) {
const int index_of_well = well->indexOfWell();
WellControls* wc = well->wellControls();
well_controls_set_current(wc, well_state_.currentControls()[index_of_well]);
}
}
SimulatorReport report;
report.converged = converged;
report.total_well_iterations = it;
return report;
}
template<typename TypeTag>
ConvergenceReport
BlackoilWellModel<TypeTag>::
getWellConvergence(const std::vector<Scalar>& B_avg) const
{
// Get global (from all processes) convergence report.
ConvergenceReport local_report;
for (const auto& well : well_container_) {
if (well->isOperable() ) {
local_report += well->getWellConvergence(B_avg);
}
}
ConvergenceReport report = gatherConvergenceReport(local_report);
// Log debug messages for NaN or too large residuals.
for (const auto& f : report.wellFailures()) {
if (f.severity() == ConvergenceReport::Severity::NotANumber) {
OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
} else if (f.severity() == ConvergenceReport::Severity::TooLarge) {
OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
}
}
return report;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateExplicitQuantities() const
{
// TODO: checking isOperable() ?
for (auto& well : well_container_) {
well->calculateExplicitQuantities(ebosSimulator_, well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellControls()
{
// Even if there no wells active locally, we cannot
// return as the Destructor of the WellSwitchingLogger
// uses global communication. For no well active globally
// we simply return.
if( !wellsActive() ) return ;
wellhelpers::WellSwitchingLogger logger;
for (const auto& well : well_container_) {
well->updateWellControl(ebosSimulator_, well_state_, logger);
}
updateGroupControls();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const
{
for (const auto& well : well_container_) {
well->updateWellTestState(well_state_, simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellPotentials(std::vector<double>& well_potentials)
{
// number of wells and phases
const int nw = numWells();
const int np = numPhases();
well_potentials.resize(nw * np, 0.0);
const Opm::SummaryConfig& summaryConfig = ebosSimulator_.vanguard().summaryConfig();
for (const auto& well : well_container_) {
// Only compute the well potential when asked for
bool needed_for_output = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPI:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->wellType() == INJECTOR) ||
((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WOPP:" + well->name()) ||
summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->wellType() == PRODUCER);
if (needed_for_output || wellCollection().requireWellPotentials())
{
std::vector<double> potentials;
well->computeWellPotentials(ebosSimulator_, well_state_, potentials);
// putting the sucessfully calculated potentials to the well_potentials
for (int p = 0; p < np; ++p) {
well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]);
}
}
} // end of for (int w = 0; w < nw; ++w)
// Store it in the well state
well_state_.wellPotentials() = well_potentials;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
prepareTimeStep()
{
if ( wellCollection().havingVREPGroups() ) {
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
}
// after restarting, the well_controls can be modified while
// the well_state still uses the old control index
// we need to synchronize these two.
// keep in mind that we set the control index of well_state to be the same with
// with the wellControls from the deck when we create well_state at the beginning of the report step
resetWellControlFromState();
// process group control related
prepareGroupControl();
for (const auto& well : well_container_) {
well->checkWellOperability(ebosSimulator_, well_state_);
}
// since the controls are all updated, we should update well_state accordingly
for (const auto& well : well_container_) {
const int w = well->indexOfWell();
WellControls* wc = well->wellControls();
const int control = well_controls_get_current(wc);
well_state_.currentControls()[w] = control;
if (!well->isOperable() ) continue;
if (well_state_.effectiveEventsOccurred(w) ) {
well->updateWellStateWithTarget(ebosSimulator_, well_state_);
}
// there is no new well control change input within a report step,
// so next time step, the well does not consider to have effective events anymore
// TODO: if we can know whether this is the first time step within the report step,
// we do not need to set it to false
// TODO: we should do this at the end of the time step in case we will need it within
// this time step somewhere
if (well_state_.effectiveEventsOccurred(w) ) {
well_state_.setEffectiveEventsOccurred(w, false);
}
} // end of for (const auto& well : well_container_)
updatePrimaryVariables();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
prepareGroupControl()
{
// group control related processing
if (wellCollection().groupControlActive()) {
for (const auto& well : well_container_) {
WellControls* wc = well->wellControls();
WellNode& well_node = wellCollection().findWellNode(well->name());
// handling the situation that wells do not have a valid control
// it happens the well specified with GRUP and restarting due to non-convergencing
// putting the well under group control for this situation
int ctrl_index = well_controls_get_current(wc);
const int group_control_index = well_node.groupControlIndex();
if (group_control_index >= 0 && ctrl_index < 0) {
// put well under group control
well_controls_set_current(wc, group_control_index);
well_state_.currentControls()[well->indexOfWell()] = group_control_index;
}
// Final step, update whehter the well is under group control or individual control
// updated ctrl_index from the well control
ctrl_index = well_controls_get_current(wc);
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
if (wellCollection().requireWellPotentials()) {
// calculate the well potentials
std::vector<double> well_potentials;
computeWellPotentials(well_potentials);
// update/setup guide rates for each well based on the well_potentials
// TODO: this is one of two places that still need Wells struct. In this function, only the well names
// well types are used, probably the order of the wells to locate the correct values in well_potentials.
wellCollection().setGuideRatesWithPotentials(wells(), phase_usage_, well_potentials);
}
applyVREPGroupControl();
if (!wellCollection().groupControlApplied()) {
wellCollection().applyGroupControls();
} else {
wellCollection().updateWellTargets(well_state_.wellRates());
}
}
}
template<typename TypeTag>
const WellCollection&
BlackoilWellModel<TypeTag>::
wellCollection() const
{
return wells_manager_->wellCollection();
}
template<typename TypeTag>
WellCollection&
BlackoilWellModel<TypeTag>::
wellCollection()
{
return wells_manager_->wellCollection();
}
template<typename TypeTag>
const typename BlackoilWellModel<TypeTag>::WellState&
BlackoilWellModel<TypeTag>::
wellState() const { return well_state_; }
template<typename TypeTag>
const typename BlackoilWellModel<TypeTag>::WellState&
BlackoilWellModel<TypeTag>::
wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); }
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
const std::string& well_name = well->name();
const WellNode& well_node = wellCollection().findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
well->setWellEfficiencyFactor(well_efficiency_factor);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellVoidageRates(std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const
{
if ( !localWellsActive() ) {
return;
}
// TODO: for now, we store the voidage rates for all the production wells.
// For injection wells, the rates are stored as zero.
// We only store the conversion coefficients for all the injection wells.
// Later, more delicate model will be implemented here.
// And for the moment, group control can only work for serial running.
const int nw = numWells();
const int np = numPhases();
// we calculate the voidage rate for each well, that means the sum of all the phases.
well_voidage_rates.resize(nw, 0);
// store the conversion coefficients, while only for the use of injection wells.
voidage_conversion_coeffs.resize(nw * np, 1.0);
std::vector<double> well_rates(np, 0.0);
std::vector<double> convert_coeff(np, 1.0);
for (auto& well : well_container_) {
const bool is_producer = well->wellType() == PRODUCER;
const int well_cell_top =well->cells()[0];
const int w = well->indexOfWell();
const int pvtRegionIdx = pvt_region_idx_[well_cell_top];
// not sure necessary to change all the value to be positive
if (is_producer) {
std::transform(well_state_.wellRates().begin() + np * w,
well_state_.wellRates().begin() + np * (w + 1),
well_rates.begin(), std::negate<double>());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
convert_coeff.begin(), 0.0);
} else {
// TODO: Not sure whether will encounter situation with all zero rates
// and whether it will cause problem here.
std::copy(well_state_.wellRates().begin() + np * w,
well_state_.wellRates().begin() + np * (w + 1),
well_rates.begin());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
std::copy(convert_coeff.begin(), convert_coeff.end(),
voidage_conversion_coeffs.begin() + np * w);
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
applyVREPGroupControl()
{
if ( wellCollection().havingVREPGroups() ) {
std::vector<double> well_voidage_rates;
std::vector<double> voidage_conversion_coeffs;
computeWellVoidageRates(well_voidage_rates, voidage_conversion_coeffs);
wellCollection().applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
// for the wells under group control, update the control index for the well_state_ and well_controls
for (const WellNode* well_node : wellCollection().getLeafNodes()) {
if (well_node->isInjector() && !well_node->individualControl()) {
const int well_index = well_node->selfIndex();
well_state_.currentControls()[well_index] = well_node->groupControlIndex();
WellControls* wc = well_container_[well_index]->wellControls();
well_controls_set_current(wc, well_node->groupControlIndex());
}
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateGroupControls()
{
if (wellCollection().groupControlActive()) {
for (auto& well : well_container_) {
// update whether well is under group control
// get well node in the well collection
WellNode& well_node = wellCollection().findWellNode(well->name());
// update whehter the well is under group control or individual control
const int current = well_state_.currentControls()[well->indexOfWell()];
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
applyVREPGroupControl();
// upate the well targets following group controls
// it will not change the control mode, only update the targets
wellCollection().updateWellTargets(well_state_.wellRates());
// TODO: we should only do the well is involved in the update group targets
for (auto& well : well_container_) {
well->updateWellStateWithTarget(ebosSimulator_, well_state_);
well->updatePrimaryVariables(well_state_);
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setupCartesianToCompressed_(const int* global_cell, int number_of_cartesian_cells)
{
cartesian_to_compressed_.resize(number_of_cartesian_cells, -1);
if (global_cell) {
for (unsigned i = 0; i < number_of_cells_; ++i) {
cartesian_to_compressed_[global_cell[i]] = i;
}
}
else {
for (unsigned i = 0; i < number_of_cells_; ++i) {
cartesian_to_compressed_[i] = i;
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeRepRadiusPerfLength(const Grid& grid)
{
for (const auto& well : well_container_) {
well->computeRepRadiusPerfLength(grid, cartesian_to_compressed_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeAverageFormationFactor(std::vector<double>& B_avg) const
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator_);
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt; ++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
auto& B = B_avg[ compIdx ];
B += 1 / fs.invB(phaseIdx).value();
}
if (has_solvent_) {
auto& B = B_avg[solventSaturationIdx];
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
}
}
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for(auto& bval: B_avg)
{
bval/=global_nc_;
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePrimaryVariables()
{
for (const auto& well : well_container_) {
well->updatePrimaryVariables(well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& eclProblem = ebosSimulator_.problem();
const unsigned numCells = grid.size(/*codim=*/0);
pvt_region_idx_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
pvt_region_idx_[cellIdx] =
eclProblem.pvtRegionIndex(cellIdx);
}
}
// The number of components in the model.
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::numComponents() const
{
if (numPhases() == 2) {
return 2;
}
int numComp = FluidSystem::numComponents;
if (has_solvent_) {
numComp ++;
}
return numComp;
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>:: numWells() const
{
return wells() ? wells()->number_of_wells : 0;
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>:: numPhases() const
{
return wells() ? wells()->number_of_phases : 1;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const unsigned numCells = grid.size(/*codim=*/0);
depth_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
depth_[cellIdx] =
grid.cellCenterDepth(cellIdx);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePerforationIntensiveQuantities() {
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
int elemIdx = elemCtx.globalSpaceIndex(0, 0);
if (!is_cell_perforated_[elemIdx]) {
continue;
}
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeRESV(const std::size_t step)
{
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells());
int global_number_resv_wells = resv_wells.size();
global_number_resv_wells = ebosSimulator_.gridView().comm().sum(global_number_resv_wells);
if ( global_number_resv_wells > 0 )
{
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
}
if (! resv_wells.empty()) {
typedef SimFIBODetails::WellMap WellMap;
const WellMap& wmap = SimFIBODetails::mapWells(wells_ecl_);
for (std::vector<int>::const_iterator
rp = resv_wells.begin(), e = resv_wells.end();
rp != e; ++rp)
{
WellControls* ctrl = wells()->ctrls[*rp];
const bool is_producer = wells()->type[*rp] == PRODUCER;
const int well_cell_top = wells()->well_cells[wells()->well_connpos[*rp]];
const int pvtreg = pvt_region_idx_[well_cell_top];
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
const int np = numPhases();
std::vector<double> distr (np);
if (0 <= rctrl) {
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
if (!is_producer) { // injectors
well_controls_assert_number_of_phases(ctrl, np);
// original distr contains 0 and 1 to indicate phases under control
const double* old_distr = well_controls_get_current_distr(ctrl);
for (int p = 0; p < np; ++p) {
distr[p] *= old_distr[p];
}
}
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
// for the WCONHIST wells, we need to calculate the RESV rates since it can not be specified directly
if (is_producer) {
const WellMap::const_iterator i = wmap.find(wells()->name[*rp]);
if (i == wmap.end()) {
OPM_THROW(std::runtime_error, "Failed to find the well " << wells()->name[*rp] << " in wmap.");
}
const auto* wp = i->second;
const WellProductionProperties& production_properties = wp->getProductionProperties(step);
// historical phase rates
std::vector<double> hrates(np);
SimFIBODetails::historyRates(phase_usage_, production_properties, hrates);
std::vector<double> hrates_resv(np);
rateConverter_->calcReservoirVoidageRates(fipreg, pvtreg, hrates, hrates_resv);
const double target = -std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
well_controls_iset_target(ctrl, rctrl, target);
}
}
}
}
}
}
// convert well data from opm-common to well state from opm-core
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
wellsToState( const data::Wells& wells,
PhaseUsage phases,
WellStateFullyImplicitBlackoil& state ) {
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector< rt > phs( np );
if( phases.phase_used[BlackoilPhases::Aqua] ) {
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( phases.phase_used[BlackoilPhases::Liquid] ) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( phases.phase_used[BlackoilPhases::Vapour] ) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for( const auto& wm : state.wellMap() ) {
const auto well_index = wm.second[ 0 ];
const auto& well = wells.at( wm.first );
state.bhp()[ well_index ] = well.bhp;
state.temperature()[ well_index ] = well.temperature;
state.currentControls()[ well_index ] = well.control;
const auto wellrate_index = well_index * np;
for( size_t i = 0; i < phs.size(); ++i ) {
assert( well.rates.has( phs[ i ] ) );
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
}
const auto perforation_pressure = []( const data::Connection& comp ) {
return comp.pressure;
};
const auto perforation_reservoir_rate = []( const data::Connection& comp ) {
return comp.reservoir_rate;
};
std::transform( well.connections.begin(),
well.connections.end(),
state.perfPress().begin() + wm.second[ 1 ],
perforation_pressure );
std::transform( well.connections.begin(),
well.connections.end(),
state.perfRates().begin() + wm.second[ 1 ],
perforation_reservoir_rate );
int local_comp_index = 0;
for (const data::Connection& comp : well.connections) {
const int global_comp_index = wm.second[1] + local_comp_index;
for (int phase_index = 0; phase_index < np; ++phase_index) {
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
}
++local_comp_index;
}
}
}
} // namespace Opm