opm-simulators/examples/flow_solvent.cpp
2015-08-24 15:41:32 +02:00

428 lines
17 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <dune/common/version.hh>
#include <opm/core/utility/platform_dependent/disable_warnings.h>
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
#include <dune/common/parallel/mpihelper.hh>
#else
#include <dune/common/mpihelper.hh>
#endif
#if HAVE_DUNE_CORNERPOINT && WANT_DUNE_CORNERPOINTGRID
#define USE_DUNE_CORNERPOINTGRID 1
#include <dune/grid/CpGrid.hpp>
#include <dune/grid/common/GridAdapter.hpp>
#else
#undef USE_DUNE_CORNERPOINTGRID
#endif
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/cornerpoint_grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/thresholdPressures.hpp> // Note: the GridHelpers must be included before this (to make overloads available). \TODO: Fix.
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/SimulatorFullyImplicitBlackoilSolvent.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/SolventPropsAdFromDeck.hpp>
#include <opm/autodiff/RedistributeDataHandles.hpp>
#include <opm/core/utility/share_obj.hpp>
#include <opm/parser/eclipse/OpmLog/OpmLog.hpp>
#include <opm/parser/eclipse/OpmLog/StreamLog.hpp>
#include <opm/parser/eclipse/OpmLog/CounterLog.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseMode.hpp>
#include <opm/parser/eclipse/EclipseState/checkDeck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#include <memory>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <numeric>
#include <cstdlib>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
#if USE_DUNE_CORNERPOINTGRID
// Must ensure an instance of the helper is created to initialise MPI.
const Dune::MPIHelper& mpi_helper = Dune::MPIHelper::instance(argc, argv);
const int mpi_rank = mpi_helper.rank();
const int mpi_size = mpi_helper.size();
#else
// default values for serial run
const int mpi_rank = 0;
const int mpi_size = 1;
#endif
// Write parameters used for later reference. (only if rank is zero)
const bool output_cout = ( mpi_rank == 0 );
if(output_cout)
{
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "* This is Flow-Solvent (version XXXX.XX) *\n";
std::cout << "* *\n";
std::cout << "* Flow-Solvent is a simulator for fully implicit three-phase, *\n";
std::cout << "* forth component (black-oil + solvent) flow, and is part of OPM. *\n";
std::cout << "* For more information see http://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
}
// Read parameters, see if a deck was specified on the command line.
if ( output_cout )
{
std::cout << "--------------- Reading parameters ---------------" << std::endl;
}
parameter::ParameterGroup param(argc, argv, false, output_cout);
if( !output_cout )
{
param.disableOutput();
}
if (!param.unhandledArguments().empty()) {
if (param.unhandledArguments().size() != 1) {
std::cerr << "You can only specify a single input deck on the command line.\n";
return EXIT_FAILURE;
} else {
param.insertParameter("deck_filename", param.unhandledArguments()[0]);
}
}
// We must have an input deck. Grid and props will be read from that.
if (!param.has("deck_filename")) {
std::cerr << "This program must be run with an input deck.\n"
"Specify the deck filename either\n"
" a) as a command line argument by itself\n"
" b) as a command line parameter with the syntax deck_filename=<path to your deck>, or\n"
" c) as a parameter in a parameter file (.param or .xml) passed to the program.\n";
return EXIT_FAILURE;
}
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
std::string deck_filename = param.get<std::string>("deck_filename");
// Write parameters used for later reference. (only if rank is zero)
bool output = ( mpi_rank == 0 ) && param.getDefault("output", true);
std::string output_dir;
if (output) {
// Create output directory if needed.
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
std::cerr << "Creating directories failed: " << fpath << std::endl;
return EXIT_FAILURE;
}
// Write simulation parameters.
param.writeParam(output_dir + "/simulation.param");
}
std::string logFile = output_dir + "/LOGFILE.txt";
Opm::ParserPtr parser(new Opm::Parser());
{
std::shared_ptr<Opm::StreamLog> streamLog = std::make_shared<Opm::StreamLog>(logFile , Opm::Log::DefaultMessageTypes);
std::shared_ptr<Opm::CounterLog> counterLog = std::make_shared<Opm::CounterLog>(Opm::Log::DefaultMessageTypes);
Opm::OpmLog::addBackend( "STREAM" , streamLog );
Opm::OpmLog::addBackend( "COUNTER" , counterLog );
}
Opm::DeckConstPtr deck;
std::shared_ptr<EclipseState> eclipseState;
Opm::ParseMode parseMode({{ ParseMode::PARSE_RANDOM_SLASH , InputError::IGNORE }});
try {
deck = parser->parseFile(deck_filename, parseMode);
Opm::checkDeck(deck);
eclipseState.reset(new Opm::EclipseState(deck , parseMode));
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid ECLIPSESTATE object. See logfile: " << logFile << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
return EXIT_FAILURE;
}
std::vector<double> porv = eclipseState->getDoubleGridProperty("PORV")->getData();
// UnstructuredGrid as grid manager
typedef UnstructuredGrid Grid;
GridManager gridManager( eclipseState->getEclipseGrid(), porv );
const Grid& grid = *(gridManager.c_grid());
// Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step)
if (param.has("output_interval")) {
int output_interval = param.get<int>("output_interval");
IOConfigPtr ioConfig = eclipseState->getIOConfig();
ioConfig->overrideRestartWriteInterval((size_t)output_interval);
}
const PhaseUsage pu = Opm::phaseUsageFromDeck(deck);
Opm::BlackoilOutputWriter outputWriter(grid, param, eclipseState, pu );
// Rock and fluid init
BlackoilPropertiesFromDeck props( deck, eclipseState,
Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Opm::UgGridHelpers::dimensions(grid), param);
BlackoilPropsAdFromDeck new_props( deck, eclipseState, grid );
SolventPropsAdFromDeck solvent_props( deck, eclipseState, Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
RockCompressibility rock_comp(deck, eclipseState);
// Gravity.
gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
BlackoilSolventState state;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::numFaces(grid),
Opm::UgGridHelpers::faceCells(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Opm::UgGridHelpers::dimensions(grid),
props, param, gravity[2], state);
initBlackoilSurfvol(Opm::UgGridHelpers::numCells(grid), props, state);
enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
const int numPhases = props.numPhases();
const int numCells = Opm::UgGridHelpers::numCells(grid);
for (int c = 0; c < numCells; ++c) {
state.gasoilratio()[c] = state.surfacevol()[c*numPhases + pu.phase_pos[Gas]]
/ state.surfacevol()[c*numPhases + pu.phase_pos[Oil]];
}
}
} else if (deck->hasKeyword("EQUIL") && props.numPhases() == 3) {
state.init(Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::numFaces(grid),
props.numPhases());
const double grav = param.getDefault("gravity", unit::gravity);
initStateEquil(grid, props, deck, eclipseState, grav, state);
state.faceflux().resize(Opm::UgGridHelpers::numFaces(grid), 0.0);
} else {
initBlackoilStateFromDeck(Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::numFaces(grid),
Opm::UgGridHelpers::faceCells(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Opm::UgGridHelpers::dimensions(grid),
props, deck, gravity[2], state);
}
// The capillary pressure is scaled in new_props to match the scaled capillary pressure in props.
if (deck->hasKeyword("SWATINIT")) {
const int numCells = Opm::UgGridHelpers::numCells(grid);
std::vector<int> cells(numCells);
for (int c = 0; c < numCells; ++c) { cells[c] = c; }
std::vector<double> pc = state.saturation();
props.capPress(numCells, state.saturation().data(), cells.data(), pc.data(),NULL);
new_props.setSwatInitScaling(state.saturation(),pc);
}
//state.solvent_saturation()[49] = 0.1;
//state.saturation()[49*3 + 2] -= 0.1;
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
#if USE_DUNE_CORNERPOINTGRID
if(output_cout)
{
std::cout << std::endl << "Warning: use of local perm is not yet implemented for CpGrid!" << std::endl << std::endl;
}
const bool use_local_perm = false;
#else
const bool use_local_perm = param.getDefault("use_local_perm", true);
#endif
DerivedGeology geoprops(grid, new_props, eclipseState, use_local_perm, grav);
boost::any parallel_information;
// At this point all properties and state variables are correctly initialized
// If there are more than one processors involved, we now repartition the grid
// and initilialize new properties and states for it.
if( mpi_size > 1 )
{
if( param.getDefault("output_matlab", false) || param.getDefault("output_ecl", true) )
{
std::cerr << "We only support vtk output during parallel runs. \n"
<< "Please use \"output_matlab=false output_ecl=false\" to deactivate the \n"
<< "other outputs!" << std::endl;
return EXIT_FAILURE;
}
Opm::distributeGridAndData( grid, eclipseState, state, new_props, geoprops, parallel_information, use_local_perm );
}
// Solver for Newton iterations.
std::unique_ptr<NewtonIterationBlackoilInterface> fis_solver;
if (param.getDefault("use_interleaved", false)) {
fis_solver.reset(new NewtonIterationBlackoilInterleaved(param));
} else if (param.getDefault("use_cpr", true)) {
fis_solver.reset(new NewtonIterationBlackoilCPR(param));
} else {
fis_solver.reset(new NewtonIterationBlackoilSimple(param, parallel_information));
}
Opm::ScheduleConstPtr schedule = eclipseState->getSchedule();
Opm::TimeMapConstPtr timeMap(schedule->getTimeMap());
SimulatorTimer simtimer;
// initialize variables
simtimer.init(timeMap);
std::vector<double> threshold_pressures = thresholdPressures(parseMode, eclipseState, grid);
SimulatorFullyImplicitBlackoilSolvent< Grid > simulator(param,
grid,
geoprops,
new_props,
solvent_props,
rock_comp.isActive() ? &rock_comp : 0,
*fis_solver,
grav,
deck->hasKeyword("DISGAS"),
deck->hasKeyword("VAPOIL"),
eclipseState,
outputWriter,
deck,
threshold_pressures,
deck->hasKeyword("SOLVENT") );
if (!schedule->initOnly()){
if( output_cout )
{
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< std::flush;
}
SimulatorReport fullReport = simulator.run(simtimer, state);
if( output_cout )
{
std::cout << "\n\n================ End of simulation ===============\n\n";
fullReport.reportFullyImplicit(std::cout);
}
if (output) {
std::string filename = output_dir + "/walltime.txt";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
fullReport.reportParam(tot_os);
warnIfUnusedParams(param);
}
} else {
outputWriter.writeInit( simtimer );
if ( output_cout )
{
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
return EXIT_FAILURE;
}