mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 12:51:56 -06:00
15116bf2a9
This commit switches to using 'map<>::insert_or_assign()' as the primary interface for collecting dynamic aquifer data. In turn, this activates move semantics for the substructures and reduces the number of times the data is copied. Insert_or_assign requires the key, so provide this value--i.e., the aquifer ID--as part of the AquiferInterface.
212 lines
7.6 KiB
C++
212 lines
7.6 KiB
C++
/*
|
|
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
|
|
#define OPM_AQUIFERCT_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/aquifers/AquiferInterface.hpp>
|
|
|
|
#include <opm/output/data/Aquifer.hpp>
|
|
|
|
#include <exception>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template <typename TypeTag>
|
|
class AquiferCarterTracy : public AquiferInterface<TypeTag>
|
|
{
|
|
public:
|
|
typedef AquiferInterface<TypeTag> Base;
|
|
|
|
using typename Base::BlackoilIndices;
|
|
using typename Base::ElementContext;
|
|
using typename Base::Eval;
|
|
using typename Base::FluidState;
|
|
using typename Base::FluidSystem;
|
|
using typename Base::IntensiveQuantities;
|
|
using typename Base::RateVector;
|
|
using typename Base::Scalar;
|
|
using typename Base::Simulator;
|
|
using typename Base::ElementMapper;
|
|
|
|
using Base::waterCompIdx;
|
|
using Base::waterPhaseIdx;
|
|
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
|
|
const Simulator& ebosSimulator,
|
|
const AquiferCT::AQUCT_data& aquct_data)
|
|
: Base(aquct_data.aquiferID, connections, ebosSimulator)
|
|
, aquct_data_(aquct_data)
|
|
{}
|
|
|
|
void endTimeStep() override
|
|
{
|
|
for (const auto& q : this->Qai_) {
|
|
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
|
|
}
|
|
this->fluxValue_ = this->W_flux_.value();
|
|
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
|
|
comm.sum(&this->fluxValue_, 1);
|
|
}
|
|
|
|
data::AquiferData aquiferData() const
|
|
{
|
|
data::AquiferData data;
|
|
data.aquiferID = this->aquiferID();
|
|
// TODO: not sure how to get this pressure value yet
|
|
data.pressure = this->pa0_;
|
|
data.fluxRate = 0.;
|
|
for (const auto& q : this->Qai_) {
|
|
data.fluxRate += q.value();
|
|
}
|
|
data.volume = this->W_flux_.value();
|
|
data.initPressure = this->pa0_;
|
|
data.type = data::AquiferType::CarterTracy;
|
|
|
|
data.aquCT = std::make_shared<data::CarterTracyData>();
|
|
data.aquCT->dimensionless_time = this->dimensionless_time_;
|
|
data.aquCT->dimensionless_pressure = this->dimensionless_pressure_;
|
|
|
|
return data;
|
|
}
|
|
|
|
protected:
|
|
// Variables constants
|
|
const AquiferCT::AQUCT_data aquct_data_;
|
|
Scalar beta_; // Influx constant
|
|
// TODO: it is possible it should be a AD variable
|
|
Scalar mu_w_{1}; // water viscosity
|
|
Scalar fluxValue_{0}; // value of flux
|
|
|
|
Scalar dimensionless_time_{0};
|
|
Scalar dimensionless_pressure_{0};
|
|
|
|
void assignRestartData(const data::AquiferData& /* xaq */) override
|
|
{
|
|
throw std::runtime_error {"Restart-based initialization not currently supported "
|
|
"for Carter-Tracey analytic aquifers"};
|
|
}
|
|
|
|
std::pair<Scalar, Scalar>
|
|
getInfluenceTableValues(const Scalar td_plus_dt)
|
|
{
|
|
// We use the opm-common numeric linear interpolator
|
|
this->dimensionless_pressure_ =
|
|
linearInterpolation(this->aquct_data_.td,
|
|
this->aquct_data_.pi,
|
|
this->dimensionless_time_);
|
|
|
|
const auto PItd =
|
|
linearInterpolation(this->aquct_data_.td,
|
|
this->aquct_data_.pi, td_plus_dt);
|
|
|
|
const auto PItdprime =
|
|
linearInterpolationDerivative(this->aquct_data_.td,
|
|
this->aquct_data_.pi, td_plus_dt);
|
|
|
|
return std::make_pair(PItd, PItdprime);
|
|
}
|
|
|
|
Scalar dpai(const int idx) const
|
|
{
|
|
Scalar dp = this->pa0_
|
|
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth())
|
|
- this->pressure_previous_.at(idx);
|
|
return dp;
|
|
}
|
|
|
|
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
|
|
std::pair<Scalar, Scalar>
|
|
calculateEqnConstants(const int idx, const Simulator& simulator)
|
|
{
|
|
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
|
|
this->dimensionless_time_ = simulator.time() / this->Tc_;
|
|
|
|
const auto [PItd, PItdprime] = this->getInfluenceTableValues(td_plus_dt);
|
|
|
|
const auto denom = this->Tc_ * (PItd - this->dimensionless_time_*PItdprime);
|
|
const auto a = (this->beta_*dpai(idx) - this->fluxValue_*PItdprime) / denom;
|
|
const auto b = this->beta_ / denom;
|
|
|
|
return std::make_pair(a, b);
|
|
}
|
|
|
|
// This function implements Eq 5.7 of the EclipseTechnicalDescription
|
|
inline void calculateInflowRate(int idx, const Simulator& simulator) override
|
|
{
|
|
const auto [a, b] = this->calculateEqnConstants(idx, simulator);
|
|
|
|
this->Qai_.at(idx) = this->alphai_.at(idx) *
|
|
(a - b*(this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
|
|
}
|
|
|
|
inline void calculateAquiferConstants() override
|
|
{
|
|
// We calculate the influx constant
|
|
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
|
|
* aquct_data_.r_o * aquct_data_.r_o;
|
|
// We calculate the time constant
|
|
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
|
|
/ (aquct_data_.k_a * aquct_data_.c1);
|
|
}
|
|
|
|
inline void calculateAquiferCondition() override
|
|
{
|
|
|
|
int pvttableIdx = aquct_data_.pvttableID - 1;
|
|
this->rhow_.resize(this->size(), 0.);
|
|
if (!aquct_data_.p0.first) {
|
|
this->pa0_ = this->calculateReservoirEquilibrium();
|
|
} else {
|
|
this->pa0_ = aquct_data_.p0.second;
|
|
}
|
|
|
|
// use the thermodynamic state of the first active cell as a
|
|
// reference. there might be better ways to do this...
|
|
ElementContext elemCtx(this->ebos_simulator_);
|
|
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
// Initialize a FluidState object first
|
|
FluidState fs_aquifer;
|
|
// We use the temperature of the first cell connected to the aquifer
|
|
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
|
|
fs_aquifer.assign(iq0.fluidState());
|
|
Eval temperature_aq, pa0_mean, saltConcentration_aq;
|
|
temperature_aq = fs_aquifer.temperature(0);
|
|
saltConcentration_aq = fs_aquifer.saltConcentration();
|
|
pa0_mean = this->pa0_;
|
|
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean, saltConcentration_aq);
|
|
mu_w_ = mu_w_aquifer.value();
|
|
}
|
|
|
|
virtual Scalar aquiferDepth() const override
|
|
{
|
|
return aquct_data_.d0;
|
|
}
|
|
}; // class AquiferCarterTracy
|
|
} // namespace Opm
|
|
|
|
#endif
|