opm-simulators/ebos/collecttoiorank.cc
2022-07-28 20:40:34 +02:00

1117 lines
37 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <ebos/collecttoiorank.hh>
#include <opm/grid/common/CartesianIndexMapper.hpp>
#include <opm/grid/CpGrid.hpp>
#include <opm/grid/polyhedralgrid.hh>
#include <dune/common/version.hh>
#include <dune/grid/common/gridenums.hh>
#include <dune/grid/common/mcmgmapper.hh>
#if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
#include <ebos/femcpgridcompat.hh>
#endif // HAVE_DUNE_FEM
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/3d/gridview.hh>
#include "alucartesianindexmapper.hh"
#endif // HAVE_DUNE_ALUGRID
#include <algorithm>
#include <cassert>
#include <stdexcept>
#include <string>
#include <vector>
namespace {
std::vector<std::string> toVector(const std::set<std::string>& string_set)
{
return { string_set.begin(), string_set.end() };
}
}
namespace Opm {
// global id
class GlobalCellIndex
{
int globalId_;
int localIndex_;
bool isInterior_;
public:
GlobalCellIndex()
: globalId_(-1)
, localIndex_(-1)
, isInterior_(true)
{}
void setGhost()
{ isInterior_ = false; }
void setId(int globalId)
{ globalId_ = globalId; }
void setIndex(int localIndex)
{ localIndex_ = localIndex; }
int localIndex () const
{ return localIndex_; }
int id () const
{ return globalId_; }
bool isInterior() const
{ return isInterior_; }
};
using IndexMapType = std::vector<int>;
using IndexMapStorageType = std::vector<IndexMapType>;
using P2PCommunicatorType = Dune::Point2PointCommunicator<Dune::SimpleMessageBuffer>;
using MessageBufferType = typename P2PCommunicatorType::MessageBufferType;
class DistributeIndexMapping : public P2PCommunicatorType::DataHandleInterface
{
protected:
const std::vector<int>& distributedGlobalIndex_;
IndexMapType& localIndexMap_;
IndexMapStorageType& indexMaps_;
std::map<int, int> globalPosition_;
std::set<int>& recv_;
std::vector<int>& ranks_;
public:
DistributeIndexMapping(const std::vector<int>& globalIndex,
const std::vector<int>& distributedGlobalIndex,
IndexMapType& localIndexMap,
IndexMapStorageType& indexMaps,
std::vector<int>& ranks,
std::set<int>& recv,
bool isIORank)
: distributedGlobalIndex_(distributedGlobalIndex)
, localIndexMap_(localIndexMap)
, indexMaps_(indexMaps)
, globalPosition_()
, recv_(recv)
, ranks_(ranks)
{
size_t size = globalIndex.size();
// create mapping globalIndex --> localIndex
if ( isIORank ) // ioRank
for (size_t index = 0; index < size; ++index)
globalPosition_.insert(std::make_pair(globalIndex[index], index));
// we need to create a mapping from local to global
if (!indexMaps_.empty()) {
if (isIORank)
ranks_.resize(size, -1);
// for the ioRank create a localIndex to index in global state map
IndexMapType& indexMap = indexMaps_.back();
size_t localSize = localIndexMap_.size();
indexMap.resize(localSize);
for (size_t i=0; i<localSize; ++i)
{
int id = distributedGlobalIndex_[localIndexMap_[i]];
indexMap[i] = id;
}
}
}
~DistributeIndexMapping()
{
if (!indexMaps_.size())
return;
if ( ranks_.size() )
{
auto rankIt = recv_.begin();
// translate index maps from global cartesian to index
for (auto& indexMap: indexMaps_)
{
int rank = 0;
if (rankIt != recv_.end())
rank = *rankIt;
for (auto&& entry: indexMap)
{
auto candidate = globalPosition_.find(entry);
assert(candidate != globalPosition_.end());
entry = candidate->second;
// Using max should be backwards compatible
ranks_[entry] = std::max(ranks_[entry], rank);
}
if (rankIt != recv_.end())
++rankIt;
}
#ifndef NDEBUG
for (const auto& rank: ranks_)
assert(rank>=0);
#endif
}
}
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as execpted");
// pack all interior global cell id's
int size = localIndexMap_.size();
buffer.write(size);
for (int index = 0; index < size; ++index) {
int globalIdx = distributedGlobalIndex_[localIndexMap_[index]];
buffer.write(globalIdx);
}
}
void unpack(int link, MessageBufferType& buffer)
{
// get index map for current link
IndexMapType& indexMap = indexMaps_[link];
assert(!globalPosition_.empty());
// unpack all interior global cell id's
int numCells = 0;
buffer.read(numCells);
indexMap.resize(numCells);
for (int index = 0; index < numCells; ++index) {
buffer.read(indexMap[index]);
}
}
};
/// \brief Communication handle to scatter the global index
template<class EquilMapper, class Mapper>
class ElementIndexScatterHandle
{
public:
ElementIndexScatterHandle(const EquilMapper& sendMapper, const Mapper& recvMapper, std::vector<int>& elementIndices)
: sendMapper_(sendMapper), recvMapper_(recvMapper), elementIndices_(elementIndices)
{}
using DataType = int;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7)
bool fixedSize(int /*dim*/, int /*codim*/)
#else
bool fixedsize(int /*dim*/, int /*codim*/)
#endif
{
return true;
}
template<class T>
std::size_t size(const T&)
{
return 1;
}
template<class B, class T>
void gather(B& buffer, const T& t)
{
buffer.write(sendMapper_.index(t));
}
template<class B, class T>
void scatter(B& buffer, const T& t, std::size_t)
{
buffer.read(elementIndices_[recvMapper_.index(t)]);
}
bool contains(int dim, int codim)
{
return dim==3 && codim==0;
}
private:
const EquilMapper& sendMapper_;
const Mapper& recvMapper_;
std::vector<int>& elementIndices_;
};
/// \brief Communication handle to scatter the global index
template<class Mapper>
class ElementIndexHandle
{
public:
ElementIndexHandle(const Mapper& mapper, std::vector<int>& elementIndices)
: mapper_(mapper), elementIndices_(elementIndices)
{}
using DataType = int;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7)
bool fixedSize(int /*dim*/, int /*codim*/)
#else
bool fixedsize(int /*dim*/, int /*codim*/)
#endif
{
return true;
}
template<class T>
std::size_t size(const T&)
{
return 1;
}
template<class B, class T>
void gather(B& buffer, const T& t)
{
buffer.write(elementIndices_[mapper_.index(t)]);
}
template<class B, class T>
void scatter(B& buffer, const T& t, std::size_t)
{
buffer.read(elementIndices_[mapper_.index(t)]);
}
bool contains(int dim, int codim)
{
return dim==3 && codim==0;
}
private:
const Mapper& mapper_;
std::vector<int>& elementIndices_;
};
class PackUnPackCellData : public P2PCommunicatorType::DataHandleInterface
{
const data::Solution& localCellData_;
data::Solution& globalCellData_;
const IndexMapType& localIndexMap_;
const IndexMapStorageType& indexMaps_;
public:
PackUnPackCellData(const data::Solution& localCellData,
data::Solution& globalCellData,
const IndexMapType& localIndexMap,
const IndexMapStorageType& indexMaps,
size_t globalSize,
bool isIORank)
: localCellData_(localCellData)
, globalCellData_(globalCellData)
, localIndexMap_(localIndexMap)
, indexMaps_(indexMaps)
{
if (isIORank) {
// add missing data to global cell data
for (const auto& pair : localCellData_) {
const std::string& key = pair.first;
std::size_t containerSize = globalSize;
[[maybe_unused]] auto ret = globalCellData_.insert(key, pair.second.dim,
std::vector<double>(containerSize),
pair.second.target);
assert(ret.second);
}
MessageBufferType buffer;
pack(0, buffer);
// the last index map is the local one
doUnpack(indexMaps.back(), buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
// write all cell data registered in local state
for (const auto& pair : localCellData_) {
const auto& data = pair.second.data;
// write all data from local data to buffer
write(buffer, localIndexMap_, data);
}
}
void doUnpack(const IndexMapType& indexMap, MessageBufferType& buffer)
{
// we loop over the data as
// its order governs the order the data got received.
for (auto& pair : localCellData_) {
const std::string& key = pair.first;
auto& data = globalCellData_.data(key);
//write all data from local cell data to buffer
read(buffer, indexMap, data);
}
}
// unpack all data associated with link
void unpack(int link, MessageBufferType& buffer)
{ doUnpack(indexMaps_[link], buffer); }
protected:
template <class Vector>
void write(MessageBufferType& buffer,
const IndexMapType& localIndexMap,
const Vector& vector,
unsigned int offset = 0,
unsigned int stride = 1) const
{
unsigned int size = localIndexMap.size();
buffer.write(size);
assert(vector.size() >= stride * size);
for (unsigned int i=0; i<size; ++i)
{
unsigned int index = localIndexMap[i] * stride + offset;
assert(index < vector.size());
buffer.write(vector[index]);
}
}
template <class Vector>
void read(MessageBufferType& buffer,
const IndexMapType& indexMap,
Vector& vector,
unsigned int offset = 0,
unsigned int stride = 1) const
{
unsigned int size = 0;
buffer.read(size);
assert(size == indexMap.size());
for (unsigned int i=0; i<size; ++i) {
unsigned int index = indexMap[i] * stride + offset;
assert(index < vector.size());
buffer.read(vector[index]);
}
}
};
class PackUnPackWellData : public P2PCommunicatorType::DataHandleInterface
{
const data::Wells& localWellData_;
data::Wells& globalWellData_;
public:
PackUnPackWellData(const data::Wells& localWellData,
data::Wells& globalWellData,
bool isIORank)
: localWellData_(localWellData)
, globalWellData_(globalWellData)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummy_link to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
localWellData_.write(buffer);
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{ globalWellData_.read(buffer); }
};
class PackUnPackGroupAndNetworkValues : public P2PCommunicatorType::DataHandleInterface
{
const data::GroupAndNetworkValues& localGroupAndNetworkData_;
data::GroupAndNetworkValues& globalGroupAndNetworkData_;
public:
PackUnPackGroupAndNetworkValues(const data::GroupAndNetworkValues& localGroupAndNetworkData,
data::GroupAndNetworkValues& globalGroupAndNetworkData,
const bool isIORank)
: localGroupAndNetworkData_ (localGroupAndNetworkData)
, globalGroupAndNetworkData_(globalGroupAndNetworkData)
{
if (! isIORank) { return; }
MessageBufferType buffer;
this->pack(0, buffer);
// pass a dummy_link to satisfy virtual class
const int dummyLink = -1;
this->unpack(dummyLink, buffer);
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0) {
throw std::logic_error {
"link in method pack is not 0 as expected"
};
}
// write all group and network (node/branch) data
this->localGroupAndNetworkData_.write(buffer);
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{ this->globalGroupAndNetworkData_.read(buffer); }
};
class PackUnPackBlockData : public P2PCommunicatorType::DataHandleInterface
{
const std::map<std::pair<std::string, int>, double>& localBlockData_;
std::map<std::pair<std::string, int>, double>& globalBlockValues_;
public:
PackUnPackBlockData(const std::map<std::pair<std::string, int>, double>& localBlockData,
std::map<std::pair<std::string, int>, double>& globalBlockValues,
bool isIORank)
: localBlockData_(localBlockData)
, globalBlockValues_(globalBlockValues)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
// write all block data
unsigned int size = localBlockData_.size();
buffer.write(size);
for (const auto& map : localBlockData_) {
buffer.write(map.first.first);
buffer.write(map.first.second);
buffer.write(map.second);
}
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{
// read all block data
unsigned int size = 0;
buffer.read(size);
for (size_t i = 0; i < size; ++i) {
std::string name;
int idx;
double data;
buffer.read(name);
buffer.read(idx);
buffer.read(data);
globalBlockValues_[std::make_pair(name, idx)] = data;
}
}
};
class PackUnPackWBPData : public P2PCommunicatorType::DataHandleInterface
{
const std::map<std::size_t, double>& localWBPData_;
std::map<std::size_t, double>& globalWBPValues_;
public:
PackUnPackWBPData(const std::map<std::size_t, double>& localWBPData,
std::map<std::size_t, double>& globalWBPValues,
bool isIORank)
: localWBPData_(localWBPData)
, globalWBPValues_(globalWBPValues)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
// write all block data
unsigned int size = localWBPData_.size();
buffer.write(size);
for (const auto& [global_index, wbp_value] : localWBPData_) {
buffer.write(global_index);
buffer.write(wbp_value);
}
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{
// read all block data
unsigned int size = 0;
buffer.read(size);
for (size_t i = 0; i < size; ++i) {
std::size_t idx;
double data;
buffer.read(idx);
buffer.read(data);
globalWBPValues_[idx] = data;
}
}
};
class PackUnPackWellTestState : public P2PCommunicatorType::DataHandleInterface
{
public:
PackUnPackWellTestState(const WellTestState& localWTestState,
WellTestState& globalWTestState,
bool isIORank)
: local_(localWTestState)
, global_(globalWTestState)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
void pack(int link, MessageBufferType& buffer) {
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
this->local_.pack(buffer);
}
void unpack(int, MessageBufferType& buffer) {
this->global_.unpack(buffer);
}
private:
const WellTestState& local_;
WellTestState& global_;
};
class PackUnPackAquiferData : public P2PCommunicatorType::DataHandleInterface
{
const data::Aquifers& localAquiferData_;
data::Aquifers& globalAquiferData_;
public:
PackUnPackAquiferData(const data::Aquifers& localAquiferData,
data::Aquifers& globalAquiferData,
bool isIORank)
: localAquiferData_(localAquiferData)
, globalAquiferData_(globalAquiferData)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
int size = localAquiferData_.size();
buffer.write(size);
for (const auto& [key, data] : localAquiferData_) {
buffer.write(key);
data.write(buffer);
}
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{
int size;
buffer.read(size);
for (int i = 0; i < size; ++i) {
int key;
buffer.read(key);
data::AquiferData data;
data.read(buffer);
auto& aq = this->globalAquiferData_[key];
this->unpackCommon(data, aq);
if (auto const* aquFet = data.typeData.get<data::AquiferType::Fetkovich>();
aquFet != nullptr)
{
this->unpackAquFet(*aquFet, aq);
}
else if (auto const* aquCT = data.typeData.get<data::AquiferType::CarterTracy>();
aquCT != nullptr)
{
this->unpackCarterTracy(*aquCT, aq);
}
else if (auto const* aquNum = data.typeData.get<data::AquiferType::Numerical>();
aquNum != nullptr)
{
this->unpackNumericAquifer(*aquNum, aq);
}
}
}
private:
void unpackCommon(const data::AquiferData& data, data::AquiferData& aq)
{
aq.aquiferID = std::max(aq.aquiferID, data.aquiferID);
aq.pressure = std::max(aq.pressure, data.pressure);
aq.initPressure = std::max(aq.initPressure, data.initPressure);
aq.datumDepth = std::max(aq.datumDepth, data.datumDepth);
aq.fluxRate += data.fluxRate;
aq.volume += data.volume;
}
void unpackAquFet(const data::FetkovichData& aquFet, data::AquiferData& aq)
{
if (! aq.typeData.is<data::AquiferType::Fetkovich>()) {
auto* tData = aq.typeData.create<data::AquiferType::Fetkovich>();
*tData = aquFet;
}
else {
const auto& src = aquFet;
auto& dst = *aq.typeData.getMutable<data::AquiferType::Fetkovich>();
dst.initVolume = std::max(dst.initVolume , src.initVolume);
dst.prodIndex = std::max(dst.prodIndex , src.prodIndex);
dst.timeConstant = std::max(dst.timeConstant, src.timeConstant);
}
}
void unpackCarterTracy(const data::CarterTracyData& aquCT, data::AquiferData& aq)
{
if (! aq.typeData.is<data::AquiferType::CarterTracy>()) {
auto* tData = aq.typeData.create<data::AquiferType::CarterTracy>();
*tData = aquCT;
}
else {
const auto& src = aquCT;
auto& dst = *aq.typeData.getMutable<data::AquiferType::CarterTracy>();
dst.timeConstant = std::max(dst.timeConstant , src.timeConstant);
dst.influxConstant = std::max(dst.influxConstant, src.influxConstant);
dst.waterDensity = std::max(dst.waterDensity , src.waterDensity);
dst.waterViscosity = std::max(dst.waterViscosity, src.waterViscosity);
dst.dimensionless_time = std::max(dst.dimensionless_time , src.dimensionless_time);
dst.dimensionless_pressure = std::max(dst.dimensionless_pressure, src.dimensionless_pressure);
}
}
void unpackNumericAquifer(const data::NumericAquiferData& aquNum, data::AquiferData& aq)
{
if (! aq.typeData.is<data::AquiferType::Numerical>()) {
auto* tData = aq.typeData.create<data::AquiferType::Numerical>();
*tData = aquNum;
}
else {
const auto& src = aquNum;
auto& dst = *aq.typeData.getMutable<data::AquiferType::Numerical>();
std::transform(src.initPressure.begin(),
src.initPressure.end(),
dst.initPressure.begin(),
dst.initPressure.begin(),
[](const double p0_1, const double p0_2)
{
return std::max(p0_1, p0_2);
});
}
}
};
class PackUnpackInterRegFlows : public P2PCommunicatorType::DataHandleInterface
{
const EclInterRegFlowMap& localInterRegFlows_;
EclInterRegFlowMap& globalInterRegFlows_;
public:
PackUnpackInterRegFlows(const EclInterRegFlowMap& localInterRegFlows,
EclInterRegFlowMap& globalInterRegFlows,
const bool isIORank)
: localInterRegFlows_ (localInterRegFlows)
, globalInterRegFlows_(globalInterRegFlows)
{
if (! isIORank) { return; }
MessageBufferType buffer;
this->pack(0, buffer);
// pass a dummy_link to satisfy virtual class
const int dummyLink = -1;
this->unpack(dummyLink, buffer);
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0) {
throw std::logic_error {
"link in method pack is not 0 as expected"
};
}
// write all inter-region flow data
this->localInterRegFlows_.write(buffer);
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{ this->globalInterRegFlows_.read(buffer); }
};
template <class Grid, class EquilGrid, class GridView>
CollectDataToIORank<Grid,EquilGrid,GridView>::
CollectDataToIORank(const Grid& grid, const EquilGrid* equilGrid,
const GridView& localGridView,
const Dune::CartesianIndexMapper<Grid>& cartMapper,
const Dune::CartesianIndexMapper<EquilGrid>* equilCartMapper,
const std::set<std::string>& fipRegionsInterregFlow)
: toIORankComm_(grid.comm())
, globalInterRegFlows_(EclInterRegFlowMap::createMapFromNames(toVector(fipRegionsInterregFlow)))
{
// index maps only have to be build when reordering is needed
if (!needsReordering && !isParallel())
return;
const CollectiveCommunication& comm = grid.comm();
{
std::set<int> send, recv;
using EquilGridView = typename EquilGrid::LeafGridView;
typename std::is_same<Grid, EquilGrid>::type isSameGrid;
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView> ElementMapper;
ElementMapper elemMapper(localGridView, Dune::mcmgElementLayout());
sortedCartesianIdx_.reserve(localGridView.size(0));
for(const auto& elem: elements(localGridView))
{
auto idx = elemMapper.index(elem);
sortedCartesianIdx_.push_back(cartMapper.cartesianIndex(idx));
}
std::sort(sortedCartesianIdx_.begin(), sortedCartesianIdx_.end());
localIdxToGlobalIdx_.resize(localGridView.size(0), -1);
// the I/O rank receives from all other ranks
if (isIORank()) {
// We need a mapping from local to global grid, here we
// use equilGrid which represents a view on the global grid
// reserve memory
const size_t globalSize = equilGrid->leafGridView().size(0);
globalCartesianIndex_.resize(globalSize, -1);
const EquilGridView equilGridView = equilGrid->leafGridView();
using EquilElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<EquilGridView>;
EquilElementMapper equilElemMapper(equilGridView, Dune::mcmgElementLayout());
// Scatter the global index to local index for lookup during restart
if constexpr (isSameGrid) {
ElementIndexScatterHandle<EquilElementMapper,ElementMapper> handle(equilElemMapper, elemMapper, localIdxToGlobalIdx_);
grid.scatterData(handle);
}
// loop over all elements (global grid) and store Cartesian index
auto elemIt = equilGrid->leafGridView().template begin<0>();
const auto& elemEndIt = equilGrid->leafGridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
int elemIdx = equilElemMapper.index(*elemIt);
int cartElemIdx = equilCartMapper->cartesianIndex(elemIdx);
globalCartesianIndex_[elemIdx] = cartElemIdx;
}
for (int i = 0; i < comm.size(); ++i) {
if (i != ioRank)
recv.insert(i);
}
}
else
{
// all other simply send to the I/O rank
send.insert(ioRank);
// Scatter the global index to local index for lookup during restart
// This is a bit hacky since the type differs from the iorank.
// But should work since we only receive, i.e. use the second parameter.
if constexpr (isSameGrid) {
ElementIndexScatterHandle<ElementMapper, ElementMapper> handle(elemMapper, elemMapper, localIdxToGlobalIdx_);
grid.scatterData(handle);
}
}
// Sync the global element indices
if constexpr (isSameGrid) {
ElementIndexHandle<ElementMapper> handle(elemMapper, localIdxToGlobalIdx_);
grid.communicate(handle, Dune::InteriorBorder_All_Interface,
Dune::ForwardCommunication);
}
localIndexMap_.clear();
const size_t gridSize = grid.size(0);
localIndexMap_.reserve(gridSize);
// store the local Cartesian index
IndexMapType distributedCartesianIndex;
distributedCartesianIndex.resize(gridSize, -1);
// A mapping for the whole grid (including the ghosts) is needed for restarts
auto eIt = localGridView.template begin<0>();
const auto& eEndIt = localGridView.template end<0>();
for (; eIt != eEndIt; ++eIt) {
const auto element = *eIt;
int elemIdx = elemMapper.index(element);
distributedCartesianIndex[elemIdx] = cartMapper.cartesianIndex(elemIdx);
// only store interior element for collection
//assert(element.partitionType() == Dune::InteriorEntity);
localIndexMap_.push_back(elemIdx);
}
// insert send and recv linkage to communicator
toIORankComm_.insertRequest(send, recv);
// need an index map for each rank
indexMaps_.clear();
indexMaps_.resize(comm.size());
// distribute global id's to io rank for later association of dof's
DistributeIndexMapping distIndexMapping(globalCartesianIndex_,
distributedCartesianIndex,
localIndexMap_,
indexMaps_,
globalRanks_,
recv,
isIORank());
toIORankComm_.exchange(distIndexMapping);
}
}
template <class Grid, class EquilGrid, class GridView>
void CollectDataToIORank<Grid,EquilGrid,GridView>::
collect(const data::Solution& localCellData,
const std::map<std::pair<std::string, int>, double>& localBlockData,
const std::map<std::size_t, double>& localWBPData,
const data::Wells& localWellData,
const data::GroupAndNetworkValues& localGroupAndNetworkData,
const data::Aquifers& localAquiferData,
const WellTestState& localWellTestState,
const EclInterRegFlowMap& localInterRegFlows)
{
globalCellData_ = {};
globalBlockData_.clear();
globalWBPData_.clear();
globalWellData_.clear();
globalGroupAndNetworkData_.clear();
globalAquiferData_.clear();
globalWellTestState_.clear();
this->globalInterRegFlows_.clear();
// index maps only have to be build when reordering is needed
if(!needsReordering && !isParallel())
return;
// this also linearises the local buffers on ioRank
PackUnPackCellData packUnpackCellData {
localCellData,
this->globalCellData_,
this->localIndexMap_,
this->indexMaps_,
this->numCells(),
this->isIORank()
};
if (! isParallel()) {
// no need to collect anything.
return;
}
PackUnPackWellData packUnpackWellData {
localWellData,
this->globalWellData_,
this->isIORank()
};
PackUnPackGroupAndNetworkValues packUnpackGroupAndNetworkData {
localGroupAndNetworkData,
this->globalGroupAndNetworkData_,
this->isIORank()
};
PackUnPackBlockData packUnpackBlockData {
localBlockData,
this->globalBlockData_,
this->isIORank()
};
PackUnPackWBPData packUnpackWBPData {
localWBPData,
this->globalWBPData_,
this->isIORank()
};
PackUnPackAquiferData packUnpackAquiferData {
localAquiferData,
this->globalAquiferData_,
this->isIORank()
};
PackUnPackWellTestState packUnpackWellTestState {
localWellTestState,
this->globalWellTestState_,
this->isIORank()
};
PackUnpackInterRegFlows packUnpackInterRegFlows {
localInterRegFlows,
this->globalInterRegFlows_,
this->isIORank()
};
toIORankComm_.exchange(packUnpackCellData);
toIORankComm_.exchange(packUnpackWellData);
toIORankComm_.exchange(packUnpackGroupAndNetworkData);
toIORankComm_.exchange(packUnpackBlockData);
toIORankComm_.exchange(packUnpackWBPData);
toIORankComm_.exchange(packUnpackAquiferData);
toIORankComm_.exchange(packUnpackWellTestState);
toIORankComm_.exchange(packUnpackInterRegFlows);
#ifndef NDEBUG
// make sure every process is on the same page
toIORankComm_.barrier();
#endif
}
template <class Grid, class EquilGrid, class GridView>
int CollectDataToIORank<Grid,EquilGrid,GridView>::
localIdxToGlobalIdx(unsigned localIdx) const
{
if (!isParallel())
return localIdx;
if (localIdxToGlobalIdx_.empty())
throw std::logic_error("index map is not created on this rank");
if (localIdx > localIdxToGlobalIdx_.size())
throw std::logic_error("local index is outside map range");
return localIdxToGlobalIdx_[localIdx];
}
template <class Grid, class EquilGrid, class GridView>
bool CollectDataToIORank<Grid,EquilGrid,GridView>::
isCartIdxOnThisRank(int cartIdx) const
{
if (!isParallel())
return true;
assert(!needsReordering);
auto candidate = std::lower_bound(sortedCartesianIdx_.begin(), sortedCartesianIdx_.end(), cartIdx);
return (candidate != sortedCartesianIdx_.end() && *candidate == cartIdx);
}
#if HAVE_DUNE_FEM
template class CollectDataToIORank<Dune::CpGrid,
Dune::CpGrid,
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>>;
template class CollectDataToIORank<Dune::CpGrid,
Dune::CpGrid,
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false> > >;
#ifdef HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class CollectDataToIORank<ALUGrid3CN,
Dune::CpGrid,
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>>;
template class CollectDataToIORank<ALUGrid3CN,
Dune::CpGrid,
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false>>>;
#endif //HAVE_DUNE_ALUGRID
#else // ! HAVE_DUNE_FEM
template class CollectDataToIORank<Dune::CpGrid,
Dune::CpGrid,
Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>;
#ifdef HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class CollectDataToIORank<ALUGrid3CN,
Dune::CpGrid,
Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN,Dune::PartitionIteratorType(4)>>>;
#endif //HAVE_DUNE_ALUGRID
#endif // ! HAVE_DUNE_FEM
template class CollectDataToIORank<Dune::PolyhedralGrid<3,3,double>,
Dune::PolyhedralGrid<3,3,double>,
Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>>;
} // end namespace Opm