opm-simulators/opm/autodiff/NewtonIterationBlackoilSimple.cpp
Markus Blatt 4527ce8ffd Add access to the underlying information about the parallelization.
We need it serveral places and all of them seem to have access to
NewtonIterationBlackoilInterface. This makes it natural to give access
to it and prevent users from having to forward it manually at several
places in the simulator driver.
2015-02-12 10:41:43 +01:00

83 lines
3.3 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
namespace Opm
{
/// Construct a system solver.
/// \param[in] linsolver linear solver to use
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
NewtonIterationBlackoilSimple::NewtonIterationBlackoilSimple(const parameter::ParameterGroup& param,
const boost::any& parallelInformation)
: iterations_( 0 ), parallelInformation_(parallelInformation)
{
linsolver_.reset(new LinearSolverFactory(param));
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
NewtonIterationBlackoilSimple::SolutionVector
NewtonIterationBlackoilSimple::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
typedef LinearisedBlackoilResidual::ADB ADB;
const int np = residual.material_balance_eq.size();
ADB mass_res = residual.material_balance_eq[0];
for (int phase = 1; phase < np; ++phase) {
mass_res = vertcat(mass_res, residual.material_balance_eq[phase]);
}
const ADB well_res = vertcat(residual.well_flux_eq, residual.well_eq);
const ADB total_residual = collapseJacs(vertcat(mass_res, well_res));
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
SolutionVector dx(SolutionVector::Zero(total_residual.size()));
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_->solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_residual.value().data(), dx.data(), parallelInformation_);
// store iterations
iterations_ = rep.iterations;
if (!rep.converged) {
OPM_THROW(std::runtime_error,
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
"Linear solver convergence failure.");
}
return dx;
}
const boost::any& NewtonIterationBlackoilSimple::parallelInformation() const
{
return parallelInformation_;
}
} // namespace Opm