opm-simulators/opm/simulators/aquifers/AquiferCarterTracy.hpp
2019-12-10 11:37:52 +01:00

280 lines
13 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <exception>
#include <stdexcept>
namespace Opm
{
template<typename TypeTag>
class AquiferCarterTracy: public AquiferInterface<TypeTag>
{
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::Simulator;
using typename Base::ElementContext;
using typename Base::FluidSystem;
using typename Base::BlackoilIndices;
using typename Base::RateVector;
using typename Base::IntensiveQuantities;
using typename Base::Eval;
using typename Base::Scalar;
using typename Base::FluidState;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferCarterTracy( const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator,
const AquiferCT::AQUCT_data& aquct_data)
: Base(connection, cartesian_to_compressed, ebosSimulator)
, aquct_data_(aquct_data)
{}
void endTimeStep() override
{
for (const auto& Qai: Base::Qai_) {
Base::W_flux_ += Qai*Base::ebos_simulator_.timeStepSize();
}
}
protected:
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
// TODO: it is possible it should be a AD variable
Scalar mu_w_; // water viscosity
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
inline void initializeConnections(const Aquancon::AquanconOutput& connection) override
{
const auto& eclState = Base::ebos_simulator_.vanguard().eclState();
const auto& ugrid = Base::ebos_simulator_.vanguard().grid();
const auto& grid = eclState.getInputGrid();
Base::cell_idx_ = connection.global_index;
auto globalCellIdx = ugrid.globalCell();
assert( Base::cell_idx_ == connection.global_index);
assert( (Base::cell_idx_.size() <= connection.influx_coeff.size()) );
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
// We hack the cell depth values for now. We can actually get it from elementcontext pos
Base::cell_depth_.resize(Base::cell_idx_.size(), aquct_data_.d0);
Base::alphai_.resize(Base::cell_idx_.size(), 1.0);
Base::faceArea_connected_.resize(Base::cell_idx_.size(),0.0);
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
Base::cellToConnectionIdx_.resize(Base::ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx)
{
const int cell_index = Base::cartesian_to_compressed_.at(Base::cell_idx_[idx]);
Base::cellToConnectionIdx_[cell_index] = idx;
const auto cellFacesRange = cell2Faces[cell_index];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
Base::faceArea_connected_.at(idx) = Base::getFaceArea(faceCells, ugrid, faceIdx, idx, connection);
denom_face_areas += ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) );
}
}
auto cellCenter = grid.getCellCenter(Base::cell_idx_.at(idx));
Base::cell_depth_.at(idx) = cellCenter[2];
}
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx)
{
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero
0.
: ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) )/denom_face_areas;
}
}
void assignRestartData(const data::AquiferData& /* xaq */) override
{
throw std::runtime_error {
"Restart-based initialization not currently supported "
"for Carter-Tracey analytic aquifers"
};
}
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// We use the opm-common numeric linear interpolator
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
}
inline Scalar dpai(int idx)
{
Scalar dp = Base::pa0_ + Base::rhow_.at(idx).value()*Base::gravity_()*(Base::cell_depth_.at(idx) - aquct_data_.d0) - Base::pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / Base::Tc_;
const Scalar td = simulator.time() / Base::Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
a = 1.0/Base::Tc_ * ( (beta_ * dpai(idx)) - (Base::W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta_ / (Base::Tc_ * ( PItd - td*PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
Scalar a, b;
calculateEqnConstants(a,b,idx,simulator);
Base::Qai_.at(idx) = Base::alphai_.at(idx)*( a - b * ( Base::pressure_current_.at(idx) - Base::pressure_previous_.at(idx) ) );
}
inline void calculateAquiferConstants() override
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h
* aquct_data_.theta * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
Base::Tc_ = mu_w_ * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o
/ ( aquct_data_.k_a * aquct_data_.c1 );
}
inline void calculateAquiferCondition() override
{
int pvttableIdx = aquct_data_.pvttableID - 1;
Base::rhow_.resize(Base::cell_idx_.size(),0.);
if (!aquct_data_.p0)
{
Base::pa0_ = calculateReservoirEquilibrium();
}
else
{
Base::pa0_ = *(aquct_data_.p0);
}
// use the thermodynamic state of the first active cell as a
// reference. there might be better ways to do this...
ElementContext elemCtx(Base::ebos_simulator_);
auto elemIt = Base::ebos_simulator_.gridView().template begin</*codim=*/0>();
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( iq0.fluidState() );
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = Base::pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
mu_w_ = mu_w_aquifer.value();
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
// TODO: this function can be moved to the Inteface class, since it is the same for both Aquifer models
inline Scalar calculateReservoirEquilibrium() override
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
ElementContext elemCtx(Base::ebos_simulator_);
const auto& gridView = Base::ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
int idx = Base::cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
Base::rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - Base::rhow_[idx].value()*Base::gravity_()*(Base::cell_depth_[idx] - aquct_data_.d0))*Base::alphai_[idx] );
}
// We take the average of the calculated equilibrium pressures.
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
return aquifer_pres_avg;
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif