opm-simulators/opm/simulators/timestepping/AdaptiveTimeStepping.hpp
2018-01-30 16:33:45 +01:00

140 lines
6.5 KiB
C++

/*
Copyright 2014 IRIS AS
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 Statoil AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SUBSTEPPING_HEADER_INCLUDED
#define OPM_SUBSTEPPING_HEADER_INCLUDED
#include <iostream>
#include <utility>
#include <opm/common/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/simulators/timestepping/TimeStepControlInterface.hpp>
namespace Opm {
// AdaptiveTimeStepping
//---------------------
class AdaptiveTimeStepping
{
public:
//! \brief contructor taking parameter object
//! \param param The parameter object
//! \param pinfo The information about the data distribution
//! and communication for a parallel run.
AdaptiveTimeStepping( const ParameterGroup& param,
const bool terminal_output = true );
//! \brief contructor taking parameter object
//! \param tuning Pointer to ecl TUNING keyword
//! \param time_step current report step
//! \param param The parameter object
//! \param pinfo The information about the data distribution
//! and communication for a parallel run.
AdaptiveTimeStepping( const Tuning& tuning,
size_t time_step,
const ParameterGroup& param,
const bool terminal_output = true );
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
\param timer simulator timer providing time and timestep
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param well_state additional well state object
\param event event status for possible tuning
*/
template <class Solver, class State, class WellState>
SimulatorReport step( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state,
const bool event);
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
\param timer simulator timer providing time and timestep
\param fipnum Fluid-in-place numbering array
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param well_state additional well state object
\param event event status for possible tuning
\param outputWriter writer object to write sub steps
*/
template <class Solver, class State, class WellState, class Output>
SimulatorReport step( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state,
const bool event,
Output& outputWriter,
const std::vector<int>* fipnum = nullptr);
/** \brief Returns the simulator report for the failed substeps of the last
* report step.
*/
const SimulatorReport& failureReport() const { return failureReport_; };
double suggestedNextStep() const { return suggested_next_timestep_; }
void setSuggestedNextStep(const double x) { suggested_next_timestep_ = x; }
void updateTUNING(const Tuning& tuning, size_t time_step) {
restart_factor_ = tuning.getTSFCNV(time_step);
growth_factor_ = tuning.getTFDIFF(time_step);
max_growth_ = tuning.getTSFMAX(time_step);
max_time_step_ = tuning.getTSMAXZ(time_step);
suggested_next_timestep_ = tuning.getTSINIT(time_step);
timestep_after_event_ = tuning.getTMAXWC(time_step);
}
protected:
template <class Solver, class State, class WellState, class Output>
SimulatorReport stepImpl( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state,
const bool event,
Output* outputWriter,
const std::vector<int>* fipnum);
void init(const ParameterGroup& param);
typedef std::unique_ptr< TimeStepControlInterface > TimeStepControlType;
SimulatorReport failureReport_; //!< statistics for the failed substeps of the last timestep
TimeStepControlType timeStepControl_; //!< time step control object
double restart_factor_; //!< factor to multiply time step with when solver fails to converge
double growth_factor_; //!< factor to multiply time step when solver recovered from failed convergence
double max_growth_; //!< factor that limits the maximum growth of a time step
double max_time_step_; //!< maximal allowed time step size
const int solver_restart_max_; //!< how many restart of solver are allowed
const bool solver_verbose_; //!< solver verbosity
const bool timestep_verbose_; //!< timestep verbosity
double suggested_next_timestep_; //!< suggested size of next timestep
bool full_timestep_initially_; //!< beginning with the size of the time step from data file
double timestep_after_event_; //!< suggested size of timestep after an event
bool use_newton_iteration_; //!< use newton iteration count for adaptive time step control
};
}
#include <opm/simulators/timestepping/AdaptiveTimeStepping_impl.hpp>
#endif