opm-simulators/opm/models/immiscible/immisciblelocalresidual.hh
2020-06-10 13:49:42 +02:00

200 lines
7.2 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::ImmiscibleLocalResidual
*/
#ifndef EWOMS_IMMISCIBLE_LOCAL_RESIDUAL_BASE_HH
#define EWOMS_IMMISCIBLE_LOCAL_RESIDUAL_BASE_HH
#include "immiscibleproperties.hh"
#include <opm/models/common/energymodule.hh>
#include <opm/material/common/Valgrind.hpp>
namespace Opm {
/*!
* \ingroup ImmiscibleModel
*
* \brief Calculates the local residual of the immiscible multi-phase
* model.
*/
template <class TypeTag>
class ImmiscibleLocalResidual : public GetPropType<TypeTag, Properties::DiscLocalResidual>
{
using Implementation = GetPropType<TypeTag, Properties::LocalResidual>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
using Toolbox = Opm::MathToolbox<Evaluation>;
public:
/*!
* \brief Adds the amount all conservation quantities (e.g. phase
* mass) within a single fluid phase
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::dofCtxParams
* \copydetails Doxygen::phaseIdxParam
*/
template <class LhsEval>
void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
// retrieve the intensive quantities for the SCV at the specified
// point in time
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& fs = intQuants.fluidState();
storage[conti0EqIdx + phaseIdx] =
Toolbox::template decay<LhsEval>(intQuants.porosity())
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.density(phaseIdx));
EnergyModule::addPhaseStorage(storage, intQuants, phaseIdx);
}
/*!
* \copydoc FvBaseLocalResidual::computeStorage
*/
template <class LhsEval>
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx) const
{
storage = 0.0;
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
asImp_().addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx);
EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx));
}
/*!
* \copydoc FvBaseLocalResidual::computeFlux
*/
void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
flux = 0.0;
asImp_().addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
asImp_().addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
}
/*!
* \brief Add the advective mass flux at a given flux integration point
*
* \copydetails computeFlux
*/
void addAdvectiveFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
////////
// advective fluxes of all components in all phases
////////
unsigned focusDofIdx = elemCtx.focusDofIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// data attached to upstream DOF of the current phase.
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
// add advective flux of current component in current phase.
const Evaluation& rho = up.fluidState().density(phaseIdx);
if (focusDofIdx == upIdx)
flux[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*rho;
else
flux[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*Toolbox::value(rho);
}
EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
}
/*!
* \brief Adds the diffusive flux at a given flux integration point.
*
* For the immiscible model, this is a no-op for mass fluxes. For energy it adds the
* contribution of thermal conduction to the enthalpy flux.
*
* \copydetails computeFlux
*/
void addDiffusiveFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
// no diffusive mass fluxes for the immiscible model
// thermal conduction
EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
}
/*!
* \copydoc FvBaseLocalResidual::computeSource
*
* By default, this method only asks the problem to specify a
* source term.
*/
void computeSource(RateVector& source,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx) const
{
Opm::Valgrind::SetUndefined(source);
elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
Opm::Valgrind::CheckDefined(source);
}
private:
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
};
} // namespace Opm
#endif