opm-simulators/opm/simulators/flow/OutputCompositionalModule.hpp
Arne Morten Kvarving 652a5a4646 GenericOutputBlackoilModule: check schedule directly for vappars
avoids a bool param in doAllocBuffers
2025-02-14 11:31:03 +01:00

355 lines
14 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::OutputCompositionalModule
*/
#ifndef OPM_OUTPUT_COMPOSITIONAL_MODULE_HPP
#define OPM_OUTPUT_COMPOSITIONAL_MODULE_HPP
#include <dune/grid/common/gridenums.hh>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/utils/parametersystem.hpp>
#include <opm/models/utils/propertysystem.hh>
#include <opm/simulators/flow/CompositionalContainer.hpp>
#include <opm/simulators/flow/FlowBaseVanguard.hpp>
#include <opm/simulators/flow/GenericOutputBlackoilModule.hpp>
#include <algorithm>
#include <cstddef>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
namespace Opm {
// forward declaration
template <class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup BlackOilSimulator
*
* \brief Output module for the results black oil model writing in
* ECL binary format.
*/
template <class TypeTag>
class OutputCompositionalModule : public GenericOutputBlackoilModule<GetPropType<TypeTag, Properties::FluidSystem>>
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using BaseType = GenericOutputBlackoilModule<FluidSystem>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
public:
template <class CollectDataToIORankType>
OutputCompositionalModule(const Simulator& simulator,
const SummaryConfig& smryCfg,
const CollectDataToIORankType& collectToIORank)
: BaseType(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
smryCfg,
simulator.vanguard().summaryState(),
moduleVersionName(),
getPropValue<TypeTag, Properties::EnableEnergy>(),
getPropValue<TypeTag, Properties::EnableTemperature>(),
getPropValue<TypeTag, Properties::EnableMech>(),
getPropValue<TypeTag, Properties::EnableSolvent>(),
getPropValue<TypeTag, Properties::EnablePolymer>(),
getPropValue<TypeTag, Properties::EnableFoam>(),
getPropValue<TypeTag, Properties::EnableBrine>(),
getPropValue<TypeTag, Properties::EnableSaltPrecipitation>(),
getPropValue<TypeTag, Properties::EnableExtbo>(),
getPropValue<TypeTag, Properties::EnableMICP>())
, simulator_(simulator)
{
for (auto& region_pair : this->regions_) {
this->createLocalRegion_(region_pair.second);
}
auto isCartIdxOnThisRank = [&collectToIORank](const int idx) {
return collectToIORank.isCartIdxOnThisRank(idx);
};
this->setupBlockData(isCartIdxOnThisRank);
if (! Parameters::Get<Parameters::OwnerCellsFirst>()) {
const std::string msg = "The output code does not support --owner-cells-first=false.";
if (collectToIORank.isIORank()) {
OpmLog::error(msg);
}
OPM_THROW_NOLOG(std::runtime_error, msg);
}
if (smryCfg.match("[FB]PP[OGW]") || smryCfg.match("RPP[OGW]*")) {
auto rset = this->eclState_.fieldProps().fip_regions();
rset.push_back("PVTNUM");
// Note: We explicitly use decltype(auto) here because the
// default scheme (-> auto) will deduce an undesirable type. We
// need the "reference to vector" semantics in this instance.
this->regionAvgDensity_
.emplace(this->simulator_.gridView().comm(),
FluidSystem::numPhases, rset,
[fp = std::cref(this->eclState_.fieldProps())]
(const std::string& rsetName) -> decltype(auto)
{ return fp.get().get_int(rsetName); });
}
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to ECL output files
*/
void
allocBuffers(const unsigned bufferSize,
const unsigned reportStepNum,
const bool substep,
const bool log,
const bool isRestart)
{
if (! std::is_same<Discretization, EcfvDiscretization<TypeTag>>::value) {
return;
}
auto rstKeywords = this->schedule_.rst_keywords(reportStepNum);
this->compC_.allocate(bufferSize, rstKeywords);
this->doAllocBuffers(bufferSize, reportStepNum, substep, log, isRestart,
/* enablePCHysteresis = */ false,
/* enableNonWettingHysteresis =*/ false,
/* enableWettingHysteresis =*/ false,
/* numOutputNnc =*/ 0,
std::move(rstKeywords));
}
void assignToSolution(data::Solution& sol)
{
this->compC_.outputRestart(sol, this->saturation_[oilPhaseIdx]);
BaseType::assignToSolution(sol);
}
/*!
* \brief Modify the internal buffers according to the intensive
* quanties relevant for an element
*/
void processElement(const ElementContext& elemCtx)
{
OPM_TIMEBLOCK_LOCAL(processElement);
if (!std::is_same<Discretization, EcfvDiscretization<TypeTag>>::value)
return;
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) {
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
// const unsigned pvtRegionIdx = 0; // elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (this->saturation_[phaseIdx].empty())
continue;
this->saturation_[phaseIdx][globalDofIdx] = getValue(fs.saturation(phaseIdx));
Valgrind::CheckDefined(this->saturation_[phaseIdx][globalDofIdx]);
}
if (this->compC_.allocated()) {
this->compC_.assignMoleFractions(globalDofIdx,
[&fs](const unsigned compIdx)
{ return getValue(fs.moleFraction(compIdx)); });
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
this->compC_.assignGasFractions(globalDofIdx,
[&fs](const unsigned compIdx)
{ return getValue(fs.moleFraction(gasPhaseIdx, compIdx)); });
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->compC_.assignOilFractions(globalDofIdx,
[&fs](const unsigned compIdx)
{ return getValue(fs.moleFraction(oilPhaseIdx, compIdx)); });
}
}
if (!this->fluidPressure_.empty()) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
// Output oil pressure as default
this->fluidPressure_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx));
} else if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
// Output gas if oil is not present
this->fluidPressure_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx));
} else {
// Output water if neither oil nor gas is present
this->fluidPressure_[globalDofIdx] = getValue(fs.pressure(waterPhaseIdx));
}
Valgrind::CheckDefined(this->fluidPressure_[globalDofIdx]);
}
if (!this->temperature_.empty()) {
this->temperature_[globalDofIdx] = getValue(fs.temperature(oilPhaseIdx));
Valgrind::CheckDefined(this->temperature_[globalDofIdx]);
}
}
}
void processElementFlows(const ElementContext& /* elemCtx */)
{
OPM_TIMEBLOCK_LOCAL(processElementBlockData);
if (!std::is_same_v<Discretization, EcfvDiscretization<TypeTag>>)
return;
}
void processElementBlockData(const ElementContext& /* elemCtx */)
{
OPM_TIMEBLOCK_LOCAL(processElementBlockData);
if (!std::is_same<Discretization, EcfvDiscretization<TypeTag>>::value)
return;
}
/*!
* \brief Capture connection fluxes, particularly to account for inter-region flows.
*
* \tparam ActiveIndex Callable type, typically a lambda, that enables
* retrieving the active index, on the local MPI rank, of a
* particular cell/element. Must support a function call operator of
* the form
\code
int operator()(const Element& elem) const
\endcode
*
* \tparam CartesianIndex Callable type, typically a lambda, that
* enables retrieving the globally unique Cartesian index of a
* particular cell/element given its active index on the local MPI
* rank. Must support a function call operator of the form
\code
int operator()(const int activeIndex) const
\endcode
*
* \param[in] elemCtx Primary lookup structure for per-cell/element
* dynamic information.
*
* \param[in] activeIndex Mapping from cell/elements to linear indices
* on local MPI rank.
*
* \param[in] cartesianIndex Mapping from active index on local MPI rank
* to globally unique Cartesian cell/element index.
*/
template <class ActiveIndex, class CartesianIndex>
void processFluxes(const ElementContext& /* elemCtx */,
ActiveIndex&& /* activeIndex*/,
CartesianIndex&& /* cartesianIndex */)
{
}
/*!
* \brief Prepare for capturing connection fluxes, particularly to
* account for inter-region flows.
*/
void initializeFluxData()
{
// Inter-region flow rates. Note: ".clear()" prepares to accumulate
// contributions per bulk connection between FIP regions.
this->interRegionFlows_.clear();
}
/*!
* \brief Finalize capturing connection fluxes.
*/
void finalizeFluxData()
{
this->interRegionFlows_.compress();
}
/*!
* \brief Get read-only access to collection of inter-region flows.
*/
const InterRegFlowMap& getInterRegFlows() const
{
return this->interRegionFlows_;
}
void updateFluidInPlace(const unsigned /* globalDofIdx */,
const IntensiveQuantities& /* intQuants */,
const double /* totVolume */)
{
// this->updateFluidInPlace_(globalDofIdx, intQuants, totVolume);
}
private:
bool isDefunctParallelWell(std::string wname) const override
{
if (simulator_.gridView().comm().size() == 1)
return false;
const auto& parallelWells = simulator_.vanguard().parallelWells();
std::pair<std::string, bool> value {wname, true};
auto candidate = std::lower_bound(parallelWells.begin(), parallelWells.end(), value);
return candidate == parallelWells.end() || *candidate != value;
}
void createLocalRegion_(std::vector<int>& region)
{
std::size_t elemIdx = 0;
for (const auto& elem : elements(simulator_.gridView())) {
if (elem.partitionType() != Dune::InteriorEntity) {
region[elemIdx] = 0;
}
++elemIdx;
}
}
const Simulator& simulator_;
CompositionalContainer<FluidSystem> compC_;
};
} // namespace Opm
#endif // OPM_OUTPUT_COMPOSITIONAL_MODULE_HPP