opm-simulators/opm/autodiff/FlowMainEbos.hpp
Andreas Lauser ef2a560fb3 flow_ebos: print statistics about failed time steps
the performance summary at the end of a Norne run which are printed by
`flow_ebos` now looks like this on my machine:

```
Total time (seconds):         773.757
Solver time (seconds):        753.349
 Assembly time (seconds):     377.218 (Failed: 23.537; 6.23965%)
 Linear solve time (seconds): 352.022 (Failed: 23.2757; 6.61201%)
 Update time (seconds):       16.3658 (Failed: 1.13149; 6.91375%)
 Output write time (seconds): 22.5991
Overall Well Iterations:      870 (Failed: 35; 4.02299%)
Overall Linearizations:       2098 (Failed: 136; 6.48236%)
Overall Newton Iterations:    1756 (Failed: 136; 7.74487%)
Overall Linear Iterations:    26572 (Failed: 1786; 6.72136%)
```

for the flow_legacy family, nothing changes.
2017-04-11 11:12:11 +02:00

800 lines
34 KiB
C++

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED
#define OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED
#include <opm/simulators/ParallelFileMerger.hpp>
#include <opm/simulators/ensureDirectoryExists.hpp>
#include <opm/autodiff/BlackoilModelEbos.hpp>
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
#include <opm/autodiff/MissingFeatures.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/autodiff/ExtractParallelGridInformationToISTL.hpp>
#include <opm/autodiff/RedistributeDataHandles.hpp>
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/OpmLog/EclipsePRTLog.hpp>
#include <opm/common/OpmLog/LogUtil.hpp>
#include <opm/common/ResetLocale.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/parser/eclipse/EclipseState/checkDeck.hpp>
#include <ewoms/version.hh>
namespace Opm
{
/// \brief Gather cell data to global random access iterator
/// \tparam ConstIter The type of constant iterator.
/// \tparam Iter The type of the mutable iterator.
/// \param grid The distributed CpGrid where loadbalance has been run.
/// \param local The local container from which the data should be sent.
/// \param global The global container to gather to.
/// \warning The global container has to have the correct size!
template<class ConstIter, class Iter>
void gatherCellDataToGlobalIterator(const Dune::CpGrid& grid,
const ConstIter& local_begin,
const Iter& global_begin)
{
#if HAVE_MPI
FixedSizeIterCopyHandle<ConstIter,Iter> handle(local_begin,
global_begin);
const auto& gatherScatterInf = grid.cellScatterGatherInterface();
Dune::VariableSizeCommunicator<> comm(grid.comm(),
gatherScatterInf);
comm.backward(handle);
#endif
}
// The FlowMain class is the ebos based black-oil simulator.
class FlowMainEbos
{
public:
typedef TTAG(EclFlowProblem) TypeTag;
typedef typename GET_PROP(TypeTag, MaterialLaw)::EclMaterialLawManager MaterialLawManager;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) EbosSimulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::SimulatorFullyImplicitBlackoilEbos Simulator;
typedef typename Simulator::ReservoirState ReservoirState;
typedef typename Simulator::OutputWriter OutputWriter;
/// This is the main function of Flow.
/// It runs a complete simulation, with the given grid and
/// simulator classes, based on user command-line input. The
/// content of this function used to be in the main() function of
/// flow.cpp.
int execute(int argc, char** argv)
{
try {
// we always want to use the default locale, and thus spare us the trouble
// with incorrect locale settings.
resetLocale();
setupParallelism(argc, argv);
printStartupMessage();
const bool ok = setupParameters(argc, argv);
if (!ok) {
return EXIT_FAILURE;
}
setupEbosSimulator();
setupOutput();
setupLogging();
extractMessages();
setupGridAndProps();
runDiagnostics();
setupState();
writeInit();
setupOutputWriter();
setupLinearSolver();
createSimulator();
// Run.
auto ret = runSimulator();
mergeParallelLogFiles();
return ret;
}
catch (const std::exception &e) {
std::ostringstream message;
message << "Program threw an exception: " << e.what();
if( output_cout_ )
{
// in some cases exceptions are thrown before the logging system is set
// up.
if (OpmLog::hasBackend("STREAMLOG")) {
OpmLog::error(message.str());
}
else {
std::cout << message.str() << "\n";
}
}
return EXIT_FAILURE;
}
}
protected:
void setupParallelism(int argc, char** argv)
{
// MPI setup.
// Must ensure an instance of the helper is created to initialise MPI.
// For a build without MPI the Dune::FakeMPIHelper is used, so rank will
// be 0 and size 1.
const Dune::MPIHelper& mpi_helper = Dune::MPIHelper::instance(argc, argv);
mpi_rank_ = mpi_helper.rank();
const int mpi_size = mpi_helper.size();
output_cout_ = ( mpi_rank_ == 0 );
must_distribute_ = ( mpi_size > 1 );
#ifdef _OPENMP
// OpenMP setup.
if (!getenv("OMP_NUM_THREADS")) {
// Default to at most 4 threads, regardless of
// number of cores (unless ENV(OMP_NUM_THREADS) is defined)
int num_cores = omp_get_num_procs();
int num_threads = std::min(4, num_cores);
omp_set_num_threads(num_threads);
}
#pragma omp parallel
if (omp_get_thread_num() == 0) {
// omp_get_num_threads() only works as expected within a parallel region.
const int num_omp_threads = omp_get_num_threads();
if (mpi_size == 1) {
std::cout << "OpenMP using " << num_omp_threads << " threads." << std::endl;
} else {
std::cout << "OpenMP using " << num_omp_threads << " threads on MPI rank " << mpi_rank_ << "." << std::endl;
}
}
#endif
}
// Print startup message if on output rank.
void printStartupMessage()
{
if (output_cout_) {
const int lineLen = 70;
const std::string version = moduleVersionName();
const std::string banner = "This is flow_ebos (version "+version+")";
const std::string ewomsVersion = "(eWoms version: " + Ewoms::versionString() + ")";
const int bannerPreLen = (lineLen - 2 - banner.size())/2;
const int bannerPostLen = bannerPreLen + (lineLen - 2 - banner.size())%2;
const int eVPreLen = (lineLen - 2 - ewomsVersion.size())/2;
const int eVPostLen = eVPreLen + (lineLen - 2 - ewomsVersion.size())%2;
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "*" << std::string(bannerPreLen, ' ') << banner << std::string(bannerPostLen, ' ') << "*\n";
std::cout << "*" << std::string(eVPreLen, ' ') << ewomsVersion << std::string(eVPostLen, ' ') << "*\n";
std::cout << "* *\n";
std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n";
std::cout << "* and is part of OPM. For more information see: *\n";
std::cout << "* http://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
}
}
// Read parameters, see if a deck was specified on the command line, and if
// it was, insert it into parameters.
// Writes to:
// param_
// Returns true if ok, false if not.
bool setupParameters(int argc, char** argv)
{
param_ = parameter::ParameterGroup(argc, argv, false, output_cout_);
// See if a deck was specified on the command line.
if (!param_.unhandledArguments().empty()) {
if (param_.unhandledArguments().size() != 1) {
std::cerr << "You can only specify a single input deck on the command line.\n";
return false;
} else {
const auto casename = this->simulationCaseName( param_.unhandledArguments()[ 0 ] );
param_.insertParameter("deck_filename", casename.string() );
}
}
// We must have an input deck. Grid and props will be read from that.
if (!param_.has("deck_filename")) {
std::cerr << "This program must be run with an input deck.\n"
"Specify the deck filename either\n"
" a) as a command line argument by itself\n"
" b) as a command line parameter with the syntax deck_filename=<path to your deck>, or\n"
" c) as a parameter in a parameter file (.param or .xml) passed to the program.\n";
return false;
}
return true;
}
// Set output_to_files_ and set/create output dir. Write parameter file.
// Writes to:
// output_to_files_
// output_dir_
// Throws std::runtime_error if failed to create (if requested) output dir.
void setupOutput()
{
output_to_files_ = output_cout_ && param_.getDefault("output", true);
// Setup output directory.
auto& ioConfig = eclState().getIOConfig();
// Default output directory is the directory where the deck is found.
const std::string default_output_dir = ioConfig.getOutputDir();
output_dir_ = param_.getDefault("output_dir", default_output_dir);
// Override output directory if user specified.
ioConfig.setOutputDir(output_dir_);
// Write parameters used for later reference. (only if rank is zero)
if (output_to_files_) {
// Create output directory if needed.
ensureDirectoryExists(output_dir_);
// Write simulation parameters.
param_.writeParam(output_dir_ + "/simulation.param");
}
}
// Setup OpmLog backend with output_dir.
void setupLogging()
{
std::string deck_filename = param_.get<std::string>("deck_filename");
// create logFile
using boost::filesystem::path;
path fpath(deck_filename);
std::string baseName;
std::ostringstream debugFileStream;
std::ostringstream logFileStream;
if (boost::to_upper_copy(path(fpath.extension()).string()) == ".DATA") {
baseName = path(fpath.stem()).string();
} else {
baseName = path(fpath.filename()).string();
}
logFileStream << output_dir_ << "/" << baseName;
debugFileStream << output_dir_ << "/" << "." << baseName;
if ( must_distribute_ && mpi_rank_ != 0 )
{
// Added rank to log file for non-zero ranks.
// This prevents message loss.
debugFileStream << "."<< mpi_rank_;
// If the following file appears then there is a bug.
logFileStream << "." << mpi_rank_;
}
logFileStream << ".PRT";
debugFileStream << ".DEBUG";
std::string debugFile = debugFileStream.str();
logFile_ = logFileStream.str();
std::shared_ptr<EclipsePRTLog> prtLog = std::make_shared<EclipsePRTLog>(logFile_ , Log::NoDebugMessageTypes, false, output_cout_);
std::shared_ptr<StreamLog> streamLog = std::make_shared<StreamLog>(std::cout, Log::StdoutMessageTypes);
OpmLog::addBackend( "ECLIPSEPRTLOG" , prtLog );
OpmLog::addBackend( "STREAMLOG", streamLog);
std::shared_ptr<StreamLog> debugLog = std::make_shared<EclipsePRTLog>(debugFile, Log::DefaultMessageTypes, false, output_cout_);
OpmLog::addBackend( "DEBUGLOG" , debugLog);
const auto& msgLimits = eclState().getSchedule().getMessageLimits();
const std::map<int64_t, int> limits = {{Log::MessageType::Note, msgLimits.getCommentPrintLimit(0)},
{Log::MessageType::Info, msgLimits.getMessagePrintLimit(0)},
{Log::MessageType::Warning, msgLimits.getWarningPrintLimit(0)},
{Log::MessageType::Error, msgLimits.getErrorPrintLimit(0)},
{Log::MessageType::Problem, msgLimits.getProblemPrintLimit(0)},
{Log::MessageType::Bug, msgLimits.getBugPrintLimit(0)}};
prtLog->setMessageLimiter(std::make_shared<MessageLimiter>());
prtLog->setMessageFormatter(std::make_shared<SimpleMessageFormatter>(false));
streamLog->setMessageLimiter(std::make_shared<MessageLimiter>(10, limits));
streamLog->setMessageFormatter(std::make_shared<SimpleMessageFormatter>(true));
// Read parameters.
if ( output_cout_ )
{
OpmLog::debug("\n--------------- Reading parameters ---------------\n");
}
}
void mergeParallelLogFiles()
{
// force closing of all log files.
OpmLog::removeAllBackends();
if( mpi_rank_ != 0 || !must_distribute_ || !output_to_files_ )
{
return;
}
namespace fs = boost::filesystem;
fs::path output_path(".");
if ( param_.has("output_dir") )
{
output_path = fs::path(output_dir_);
}
fs::path deck_filename(param_.get<std::string>("deck_filename"));
std::for_each(fs::directory_iterator(output_path),
fs::directory_iterator(),
detail::ParallelFileMerger(output_path, deck_filename.stem().string()));
}
void setupEbosSimulator()
{
std::string progName("flow_ebos");
std::string deckFile("--ecl-deck-file-name=");
deckFile += param_.get<std::string>("deck_filename");
char* ptr[2];
ptr[ 0 ] = const_cast< char * > (progName.c_str());
ptr[ 1 ] = const_cast< char * > (deckFile.c_str());
EbosSimulator::registerParameters();
Ewoms::setupParameters_< TypeTag > ( 2, ptr );
ebosSimulator_.reset(new EbosSimulator(/*verbose=*/false));
ebosSimulator_->model().applyInitialSolution();
// Create a grid with a global view.
globalGrid_.reset(new Grid(grid()));
globalGrid_->switchToGlobalView();
try {
if (output_cout_) {
MissingFeatures::checkKeywords(deck());
}
// Possible to force initialization only behavior (NOSIM).
if (param_.has("nosim")) {
const bool nosim = param_.get<bool>("nosim");
auto& ioConfig = eclState().getIOConfig();
ioConfig.overrideNOSIM( nosim );
}
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid EclipseState object. See logfile: " << logFile_ << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
throw;
}
// Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step)
if (param_.has("output_interval")) {
const int output_interval = param_.get<int>("output_interval");
eclState().getRestartConfig().overrideRestartWriteInterval( size_t( output_interval ) );
}
}
// Create distributed property objects.
// Writes to:
// fluidprops_
void setupGridAndProps()
{
Dune::CpGrid& grid = ebosSimulator_->gridManager().grid();
// create the legacy properties objects
fluidprops_.reset(new BlackoilPropsAdFromDeck(deck(),
eclState(),
materialLawManager(),
grid));
// Geological properties
bool use_local_perm = param_.getDefault("use_local_perm", true);
geoprops_.reset(new DerivedGeology(grid, *fluidprops_, eclState(), use_local_perm, &ebosProblem().gravity()[0]));
}
const Deck& deck() const
{ return ebosSimulator_->gridManager().deck(); }
Deck& deck()
{ return ebosSimulator_->gridManager().deck(); }
const EclipseState& eclState() const
{ return ebosSimulator_->gridManager().eclState(); }
EclipseState& eclState()
{ return ebosSimulator_->gridManager().eclState(); }
// Initialise the reservoir state. Updated fluid props for SWATINIT.
// Writes to:
// state_
// threshold_pressures_
// fluidprops_ (if SWATINIT is used)
void setupState()
{
const PhaseUsage pu = Opm::phaseUsageFromDeck(deck());
const Grid& grid = this->grid();
// Need old-style fluid object for init purposes (only).
BlackoilPropertiesFromDeck props(deck(),
eclState(),
materialLawManager(),
grid.size(/*codim=*/0),
grid.globalCell().data(),
grid.logicalCartesianSize().data(),
param_);
// Init state variables (saturation and pressure).
if (param_.has("init_saturation")) {
state_.reset(new ReservoirState(grid.size(/*codim=*/0),
grid.numFaces(),
props.numPhases()));
initStateBasic(grid.size(/*codim=*/0),
grid.globalCell().data(),
grid.logicalCartesianSize().data(),
grid.numFaces(),
Opm::UgGridHelpers::faceCells(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Grid::dimension,
props, param_, gravity(), *state_);
initBlackoilSurfvol(Opm::UgGridHelpers::numCells(grid), props, *state_);
enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
const int numPhases = props.numPhases();
const int numCells = Opm::UgGridHelpers::numCells(grid);
// Uglyness 1: The state is a templated type, here we however make explicit use BlackoilState.
auto& gor = state_->getCellData( BlackoilState::GASOILRATIO );
const auto& surface_vol = state_->getCellData( BlackoilState::SURFACEVOL );
for (int c = 0; c < numCells; ++c) {
// Uglyness 2: Here we explicitly use the layout of the saturation in the surface_vol field.
gor[c] = surface_vol[ c * numPhases + pu.phase_pos[Gas]] / surface_vol[ c * numPhases + pu.phase_pos[Oil]];
}
}
} else if (deck().hasKeyword("EQUIL")) {
// Which state class are we really using - what a f... mess?
state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::numFaces(grid),
props.numPhases()));
initStateEquil(grid, props, deck(), eclState(), gravity(), *state_);
//state_.faceflux().resize(Opm::UgGridHelpers::numFaces(grid), 0.0);
} else {
state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::numFaces(grid),
props.numPhases()));
initBlackoilStateFromDeck(Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::numFaces(grid),
Opm::UgGridHelpers::faceCells(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
Opm::UgGridHelpers::beginCellCentroids(grid),
Opm::UgGridHelpers::dimensions(grid),
props, deck(), gravity(), *state_);
}
// The capillary pressure is scaled in fluidprops_ to match the scaled capillary pressure in props.
if (deck().hasKeyword("SWATINIT")) {
const int numCells = Opm::UgGridHelpers::numCells(grid);
std::vector<int> cells(numCells);
for (int c = 0; c < numCells; ++c) { cells[c] = c; }
std::vector<double> pc = state_->saturation();
props.capPress(numCells, state_->saturation().data(), cells.data(), pc.data(), nullptr);
fluidprops_->setSwatInitScaling(state_->saturation(), pc);
}
initHydroCarbonState(*state_, pu, Opm::UgGridHelpers::numCells(grid), deck().hasKeyword("DISGAS"), deck().hasKeyword("VAPOIL"));
}
// Extract messages from parser.
// Writes to:
// OpmLog singleton.
void extractMessages()
{
if ( !output_cout_ )
{
return;
}
auto extractMessage = [this](const Message& msg) {
auto log_type = this->convertMessageType(msg.mtype);
const auto& location = msg.location;
if (location) {
OpmLog::addMessage(log_type, Log::fileMessage(location.filename, location.lineno, msg.message));
} else {
OpmLog::addMessage(log_type, msg.message);
}
};
// Extract messages from Deck.
for(const auto& msg : deck().getMessageContainer()) {
extractMessage(msg);
}
// Extract messages from EclipseState.
for (const auto& msg : eclState().getMessageContainer()) {
extractMessage(msg);
}
}
// Run diagnostics.
// Writes to:
// OpmLog singleton.
void runDiagnostics()
{
if( ! output_cout_ )
{
return;
}
// Run relperm diagnostics
RelpermDiagnostics diagnostic;
diagnostic.diagnosis(eclState(), deck(), this->grid());
}
void writeInit()
{
bool output = param_.getDefault("output", true);
bool output_ecl = param_.getDefault("output_ecl", true);
if( output && output_ecl )
{
const Grid& grid = this->globalGrid();
if( output_cout_ ){
const EclipseGrid& inputGrid = eclState().getInputGrid();
eclIO_.reset(new EclipseIO(eclState(), UgGridHelpers::createEclipseGrid( grid , inputGrid )));
}
const NNC* nnc = &geoprops_->nonCartesianConnections();
data::Solution globaltrans;
if ( must_distribute_ )
{
// dirty and dangerous hack!
// We rely on opmfil in GeoProps being hardcoded to true
// which prevents the pinch processing from running.
// Ergo the nncs are unchanged.
nnc = &eclState().getInputNNC();
// Gather the global simProps
data::Solution localtrans = geoprops_->simProps(this->grid());
for( const auto& localkeyval: localtrans)
{
auto& globalval = globaltrans[localkeyval.first].data;
const auto& localval = localkeyval.second.data;
if( output_cout_ )
{
globalval.resize( grid.size(0));
}
gatherCellDataToGlobalIterator(this->grid(), localval.begin(),
globalval.begin());
}
}
else
{
globaltrans = geoprops_->simProps(grid);
}
if( output_cout_ )
{
eclIO_->writeInitial(globaltrans,
*nnc);
}
}
}
// Setup output writer.
// Writes to:
// output_writer_
void setupOutputWriter()
{
// create output writer after grid is distributed, otherwise the parallel output
// won't work correctly since we need to create a mapping from the distributed to
// the global view
output_writer_.reset(new OutputWriter(grid(),
param_,
eclState(),
std::move(eclIO_),
Opm::phaseUsageFromDeck(deck())) );
}
// Run the simulator.
// Returns EXIT_SUCCESS if it does not throw.
int runSimulator()
{
const auto& schedule = eclState().getSchedule();
const auto& timeMap = schedule.getTimeMap();
auto& ioConfig = eclState().getIOConfig();
SimulatorTimer simtimer;
// initialize variables
const auto& initConfig = eclState().getInitConfig();
simtimer.init(timeMap, (size_t)initConfig.getRestartStep());
if (!ioConfig.initOnly()) {
if (output_cout_) {
std::string msg;
msg = "\n\n================ Starting main simulation loop ===============\n";
OpmLog::info(msg);
}
SimulatorReport successReport = simulator_->run(simtimer, *state_);
SimulatorReport failureReport = simulator_->failureReport();
if (output_cout_) {
std::ostringstream ss;
ss << "\n\n================ End of simulation ===============\n\n";
successReport.reportFullyImplicit(ss, &failureReport);
OpmLog::info(ss.str());
if (param_.anyUnused()) {
// This allows a user to catch typos and misunderstandings in the
// use of simulator parameters.
std::cout << "-------------------- Unused parameters: --------------------\n";
param_.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
if (output_to_files_) {
std::string filename = output_dir_ + "/walltime.txt";
std::fstream tot_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
successReport.reportParam(tot_os);
}
} else {
if (output_cout_) {
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
}
return EXIT_SUCCESS;
}
// Setup linear solver.
// Writes to:
// fis_solver_
void setupLinearSolver()
{
typedef typename BlackoilModelEbos :: ISTLSolverType ISTLSolverType;
extractParallelGridInformationToISTL(grid(), parallel_information_);
fis_solver_.reset( new ISTLSolverType( param_, parallel_information_ ) );
}
/// This is the main function of Flow.
// Create simulator instance.
// Writes to:
// simulator_
void createSimulator()
{
// Create the simulator instance.
simulator_.reset(new Simulator(*ebosSimulator_,
param_,
*geoprops_,
*fluidprops_,
*fis_solver_,
FluidSystem::enableDissolvedGas(),
FluidSystem::enableVaporizedOil(),
eclState(),
*output_writer_,
defunctWellNames()));
}
private:
boost::filesystem::path simulationCaseName( const std::string& casename ) {
namespace fs = boost::filesystem;
const auto exists = []( const fs::path& f ) -> bool {
if( !fs::exists( f ) ) return false;
if( fs::is_regular_file( f ) ) return true;
return fs::is_symlink( f )
&& fs::is_regular_file( fs::read_symlink( f ) );
};
auto simcase = fs::path( casename );
if( exists( simcase ) ) {
return simcase;
}
for( const auto& ext : { std::string("data"), std::string("DATA") } ) {
if( exists( simcase.replace_extension( ext ) ) ) {
return simcase;
}
}
throw std::invalid_argument( "Cannot find input case " + casename );
}
int64_t convertMessageType(const Message::type& mtype)
{
switch (mtype) {
case Message::type::Debug:
return Log::MessageType::Debug;
case Message::type::Info:
return Log::MessageType::Info;
case Message::type::Warning:
return Log::MessageType::Warning;
case Message::type::Error:
return Log::MessageType::Error;
case Message::type::Problem:
return Log::MessageType::Problem;
case Message::type::Bug:
return Log::MessageType::Bug;
case Message::type::Note:
return Log::MessageType::Note;
}
throw std::logic_error("Invalid messages type!\n");
}
Grid& grid()
{ return ebosSimulator_->gridManager().grid(); }
const Grid& globalGrid()
{ return *globalGrid_; }
Problem& ebosProblem()
{ return ebosSimulator_->problem(); }
const Problem& ebosProblem() const
{ return ebosSimulator_->problem(); }
std::shared_ptr<MaterialLawManager> materialLawManager()
{ return ebosProblem().materialLawManager(); }
Scalar gravity() const
{ return ebosProblem().gravity()[2]; }
std::unordered_set<std::string> defunctWellNames() const
{ return ebosSimulator_->gridManager().defunctWellNames(); }
std::unique_ptr<EbosSimulator> ebosSimulator_;
int mpi_rank_ = 0;
bool output_cout_ = false;
bool must_distribute_ = false;
parameter::ParameterGroup param_;
bool output_to_files_ = false;
std::string output_dir_ = std::string(".");
std::unique_ptr<BlackoilPropsAdFromDeck> fluidprops_;
std::unique_ptr<DerivedGeology> geoprops_;
std::unique_ptr<ReservoirState> state_;
std::unique_ptr<EclipseIO> eclIO_;
std::unique_ptr<OutputWriter> output_writer_;
boost::any parallel_information_;
std::unique_ptr<NewtonIterationBlackoilInterface> fis_solver_;
std::unique_ptr<Simulator> simulator_;
std::string logFile_;
// Needs to be shared pointer because it gets initialzed before MPI_Init.
std::shared_ptr<Grid> globalGrid_;
};
} // namespace Opm
#endif // OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED