mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 08:41:00 -06:00
313 lines
11 KiB
C++
313 lines
11 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/NewtonIterationUtilities.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
#if HAVE_UMFPACK
|
|
#include <Eigen/UmfPackSupport>
|
|
#else
|
|
#include <Eigen/SparseLU>
|
|
#endif
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
typedef Eigen::SparseMatrix<double> S;
|
|
|
|
|
|
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
|
|
{
|
|
// Check that the variable index to eliminate is within bounds.
|
|
const int num_eq = eqs.size();
|
|
const int num_vars = eqs[0].derivative().size();
|
|
if (num_eq != num_vars) {
|
|
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
|
|
}
|
|
if (n >= num_eq) {
|
|
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
|
|
}
|
|
|
|
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
|
|
// This is applied to all 2x2 block submatrices
|
|
// The right hand side is modified accordingly. bi = bi - B * inv(D)* bn;
|
|
// We do not explicitly compute inv(D) instead Du = C is solved
|
|
|
|
// Extract the submatrix
|
|
const std::vector<M>& Jn = eqs[n].derivative();
|
|
|
|
// Use sparse LU to solve the block submatrices i.e compute inv(D)
|
|
typedef Eigen::SparseMatrix<double> Sp;
|
|
Sp Jnn;
|
|
Jn[n].toSparse(Jnn);
|
|
#if HAVE_UMFPACK
|
|
const Eigen::UmfPackLU<Sp> solver(Jnn);
|
|
#else
|
|
const Eigen::SparseLU<Sp> solver(Jnn);
|
|
#endif
|
|
Sp id(Jn[n].rows(), Jn[n].cols());
|
|
id.setIdentity();
|
|
const Sp Di = solver.solve(id);
|
|
|
|
// compute inv(D)*bn for the update of the right hand side
|
|
// Note: Eigen version > 3.2 requires a non-const reference to solve.
|
|
ADB::V eqs_n_v = eqs[n].value();
|
|
const Eigen::VectorXd& Dibn = solver.solve(eqs_n_v.matrix());
|
|
|
|
std::vector<V> vals(num_eq); // Number n will remain empty.
|
|
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
|
|
for (int eq = 0; eq < num_eq; ++eq) {
|
|
jacs[eq].reserve(num_eq - 1);
|
|
const std::vector<M>& Je = eqs[eq].derivative();
|
|
const M& B = Je[n];
|
|
// Update right hand side.
|
|
vals[eq] = eqs[eq].value().matrix() - B * Dibn;
|
|
}
|
|
for (int var = 0; var < num_eq; ++var) {
|
|
if (var == n) {
|
|
continue;
|
|
}
|
|
// solve Du = C
|
|
// const M u = Di * Jn[var]; // solver.solve(Jn[var]);
|
|
M u;
|
|
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
|
|
for (int eq = 0; eq < num_eq; ++eq) {
|
|
if (eq == n) {
|
|
continue;
|
|
}
|
|
const std::vector<M>& Je = eqs[eq].derivative();
|
|
const M& B = Je[n];
|
|
|
|
// Create new jacobians.
|
|
// Add A
|
|
jacs[eq].push_back(Je[var]);
|
|
M& J = jacs[eq].back();
|
|
// Subtract Bu (B*inv(D)*C)
|
|
M Bu;
|
|
fastSparseProduct(B, u, Bu);
|
|
J = J + (Bu * -1.0);
|
|
}
|
|
}
|
|
|
|
// Create return value.
|
|
std::vector<ADB> retval;
|
|
retval.reserve(num_eq - 1);
|
|
for (int eq = 0; eq < num_eq; ++eq) {
|
|
if (eq == n) {
|
|
continue;
|
|
}
|
|
retval.push_back(ADB::function(std::move(vals[eq]), std::move(jacs[eq])));
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
|
|
{
|
|
// The equation to solve for the unknown y (to be recovered) is
|
|
// Cx + Dy = b
|
|
// Dy = (b - Cx)
|
|
// where D is the eliminated block, C is the jacobian of
|
|
// the eliminated equation with respect to the
|
|
// non-eliminated unknowms, b is the right-hand side of
|
|
// the eliminated equation, and x is the partial solution
|
|
// of the non-eliminated unknowns.
|
|
|
|
const M& D1 = equation.derivative()[n];
|
|
// Build C.
|
|
std::vector<M> C_jacs = equation.derivative();
|
|
C_jacs.erase(C_jacs.begin() + n);
|
|
V equation_value = equation.value();
|
|
ADB eq_coll = collapseJacs(ADB::function(std::move(equation_value), std::move(C_jacs)));
|
|
const M& C = eq_coll.derivative()[0];
|
|
|
|
// Use sparse LU to solve the block submatrices
|
|
typedef Eigen::SparseMatrix<double> Sp;
|
|
Sp D;
|
|
D1.toSparse(D);
|
|
#if HAVE_UMFPACK
|
|
const Eigen::UmfPackLU<Sp> solver(D);
|
|
#else
|
|
const Eigen::SparseLU<Sp> solver(D);
|
|
#endif
|
|
|
|
// Compute value of eliminated variable.
|
|
const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
|
|
const Eigen::VectorXd elim_var = solver.solve(b);
|
|
|
|
// Find the relevant sizes to use when reconstructing the full solution.
|
|
const int nelim = equation.size();
|
|
const int npart = partial_solution.size();
|
|
assert(C.cols() == npart);
|
|
const int full_size = nelim + npart;
|
|
int start = 0;
|
|
for (int i = 0; i < n; ++i) {
|
|
start += equation.derivative()[i].cols();
|
|
}
|
|
assert(start < full_size);
|
|
|
|
// Reconstruct complete solution vector.
|
|
V sol(full_size);
|
|
std::copy_n(partial_solution.data(), start, sol.data());
|
|
std::copy_n(elim_var.data(), nelim, sol.data() + start);
|
|
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
|
|
return sol;
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Form an elliptic system of equations.
|
|
/// \param[in] num_phases the number of fluid phases
|
|
/// \param[in] eqs the equations
|
|
/// \param[out] A the resulting full system matrix
|
|
/// \param[out] b the right hand side
|
|
/// This function will deal with the first num_phases
|
|
/// equations in eqs, and return a matrix A for the full
|
|
/// system that has a elliptic upper left corner, if possible.
|
|
void formEllipticSystem(const int num_phases,
|
|
const std::vector<ADB>& eqs_in,
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
|
V& b)
|
|
{
|
|
if (num_phases != 3) {
|
|
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases.");
|
|
}
|
|
|
|
// A concession to MRST, to obtain more similar behaviour:
|
|
// swap the first two equations, so that oil is first, then water.
|
|
auto eqs = eqs_in;
|
|
eqs[0].swap(eqs[1]);
|
|
|
|
// Characterize the material balance equations.
|
|
const int n = eqs[0].size();
|
|
const double ratio_limit = 0.01;
|
|
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
|
|
// The l1 block indicates if the equation for a given cell and phase is
|
|
// sufficiently strong on the diagonal.
|
|
Block l1 = Block::Zero(n, num_phases);
|
|
{
|
|
S J;
|
|
for (int phase = 0; phase < num_phases; ++phase) {
|
|
eqs[phase].derivative()[0].toSparse(J);
|
|
V dj = J.diagonal().cwiseAbs();
|
|
V sod = V::Zero(n);
|
|
for (int elem = 0; elem < n; ++elem) {
|
|
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
|
|
}
|
|
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
|
|
}
|
|
}
|
|
|
|
// By default, replace first equation with sum of all phase equations.
|
|
// Build helper vectors.
|
|
V l21 = V::Zero(n);
|
|
V l22 = V::Ones(n);
|
|
V l31 = V::Zero(n);
|
|
V l33 = V::Ones(n);
|
|
|
|
// If the first phase diagonal is not strong enough, we need further treatment.
|
|
// Then the first equation will be the sum of the remaining equations,
|
|
// and we swap the first equation into one of their slots.
|
|
for (int elem = 0; elem < n; ++elem) {
|
|
if (!l1(elem, 0)) {
|
|
const double l12x = l1(elem, 1);
|
|
const double l13x = l1(elem, 2);
|
|
const bool allzero = (l12x + l13x == 0);
|
|
if (allzero) {
|
|
l1(elem, 0) = 1;
|
|
} else {
|
|
if (l12x >= l13x) {
|
|
l21(elem) = 1;
|
|
l22(elem) = 0;
|
|
} else {
|
|
l31(elem) = 1;
|
|
l33(elem) = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct the sparse matrix L that does the swaps and sums.
|
|
Span i1(n, 1, 0);
|
|
Span i2(n, 1, n);
|
|
Span i3(n, 1, 2*n);
|
|
std::vector< Eigen::Triplet<double> > t;
|
|
t.reserve(7*n);
|
|
for (int ii = 0; ii < n; ++ii) {
|
|
t.emplace_back(i1[ii], i1[ii], l1(ii));
|
|
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
|
|
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
|
|
t.emplace_back(i2[ii], i1[ii], l21(ii));
|
|
t.emplace_back(i2[ii], i2[ii], l22(ii));
|
|
t.emplace_back(i3[ii], i1[ii], l31(ii));
|
|
t.emplace_back(i3[ii], i3[ii], l33(ii));
|
|
}
|
|
S L(3*n, 3*n);
|
|
L.setFromTriplets(t.begin(), t.end());
|
|
|
|
// Combine in single block.
|
|
ADB total_residual = vertcatCollapseJacs(eqs);
|
|
|
|
S derivative;
|
|
total_residual.derivative()[0].toSparse(derivative);
|
|
|
|
// Create output as product of L with equations.
|
|
A = L * derivative;
|
|
b = L * total_residual.value().matrix();
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Return true if this is a serial run, or rank zero on an MPI run.
|
|
bool isIORank(const boost::any& parallel_info)
|
|
{
|
|
#if HAVE_MPI
|
|
if (parallel_info.type() == typeid(ParallelISTLInformation)) {
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(parallel_info);
|
|
return info.communicator().rank() == 0;
|
|
} else {
|
|
return true;
|
|
}
|
|
#else
|
|
static_cast<void>(parallel_info); // Suppress unused argument warning.
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
|
|
} // namespace Opm
|
|
|