mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-24 08:20:01 -06:00
983 lines
35 KiB
C++
983 lines
35 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
template<typename TypeTag>
|
|
WellInterface<TypeTag>::
|
|
WellInterface(const Well* well, const int time_step, const Wells* wells,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components)
|
|
: well_ecl_(well)
|
|
, current_step_(time_step)
|
|
, param_(param)
|
|
, rateConverter_(rate_converter)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, num_components_(num_components)
|
|
{
|
|
if (!well) {
|
|
OPM_THROW(std::invalid_argument, "Null pointer of Well is used to construct WellInterface");
|
|
}
|
|
|
|
if (time_step < 0) {
|
|
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
|
|
}
|
|
|
|
if (!wells) {
|
|
OPM_THROW(std::invalid_argument, "Null pointer of Wells is used to construct WellInterface");
|
|
}
|
|
|
|
const std::string& well_name = well->name();
|
|
|
|
// looking for the location of the well in the wells struct
|
|
int index_well;
|
|
for (index_well = 0; index_well < wells->number_of_wells; ++index_well) {
|
|
if (well_name == std::string(wells->name[index_well])) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// should not enter the constructor if the well does not exist in the wells struct
|
|
// here, just another assertion.
|
|
assert(index_well != wells->number_of_wells);
|
|
|
|
index_of_well_ = index_well;
|
|
well_type_ = wells->type[index_well];
|
|
number_of_phases_ = wells->number_of_phases;
|
|
|
|
// copying the comp_frac
|
|
{
|
|
comp_frac_.resize(number_of_phases_);
|
|
const int index_begin = index_well * number_of_phases_;
|
|
std::copy(wells->comp_frac + index_begin,
|
|
wells->comp_frac + index_begin + number_of_phases_, comp_frac_.begin() );
|
|
}
|
|
|
|
well_controls_ = wells->ctrls[index_well];
|
|
|
|
ref_depth_ = wells->depth_ref[index_well];
|
|
|
|
// perforations related
|
|
{
|
|
const int perf_index_begin = wells->well_connpos[index_well];
|
|
const int perf_index_end = wells->well_connpos[index_well + 1];
|
|
number_of_perforations_ = perf_index_end - perf_index_begin;
|
|
first_perf_ = perf_index_begin;
|
|
|
|
well_cells_.resize(number_of_perforations_);
|
|
std::copy(wells->well_cells + perf_index_begin,
|
|
wells->well_cells + perf_index_end,
|
|
well_cells_.begin() );
|
|
|
|
well_index_.resize(number_of_perforations_);
|
|
std::copy(wells->WI + perf_index_begin,
|
|
wells->WI + perf_index_end,
|
|
well_index_.begin() );
|
|
|
|
saturation_table_number_.resize(number_of_perforations_);
|
|
std::copy(wells->sat_table_id + perf_index_begin,
|
|
wells->sat_table_id + perf_index_end,
|
|
saturation_table_number_.begin() );
|
|
}
|
|
well_efficiency_factor_ = 1.0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& /* depth_arg */,
|
|
const double gravity_arg,
|
|
const int /* num_cells */)
|
|
{
|
|
phase_usage_ = phase_usage_arg;
|
|
gravity_ = gravity_arg;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
setVFPProperties(const VFPProperties* vfp_properties_arg)
|
|
{
|
|
vfp_properties_ = vfp_properties_arg;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::string&
|
|
WellInterface<TypeTag>::
|
|
name() const
|
|
{
|
|
return well_ecl_->name();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
WellType
|
|
WellInterface<TypeTag>::
|
|
wellType() const
|
|
{
|
|
return well_type_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
WellControls*
|
|
WellInterface<TypeTag>::
|
|
wellControls() const
|
|
{
|
|
return well_controls_;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
const int
|
|
WellInterface<TypeTag>::
|
|
indexOfWell() const
|
|
{
|
|
return index_of_well_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
getAllowCrossFlow() const
|
|
{
|
|
return well_ecl_->getAllowCrossFlow();
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
setWellEfficiencyFactor(const double efficiency_factor)
|
|
{
|
|
well_efficiency_factor_ = efficiency_factor;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const Well*
|
|
WellInterface<TypeTag>::
|
|
wellEcl() const
|
|
{
|
|
return well_ecl_;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const PhaseUsage&
|
|
WellInterface<TypeTag>::
|
|
phaseUsage() const
|
|
{
|
|
assert(phase_usage_);
|
|
|
|
return *phase_usage_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
WellInterface<TypeTag>::
|
|
flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
|
|
return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
|
|
return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
|
|
return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
|
|
// for other phases return the index
|
|
return phaseIdx;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
WellInterface<TypeTag>::
|
|
ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx)
|
|
return pu.phase_pos[Water];
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == compIdx)
|
|
return pu.phase_pos[Oil];
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == compIdx)
|
|
return pu.phase_pos[Gas];
|
|
|
|
// for other phases return the index
|
|
return compIdx;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
wsolvent() const
|
|
{
|
|
if (!has_solvent) {
|
|
return 0.0;
|
|
}
|
|
|
|
WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_);
|
|
if (injection.injectorType == WellInjector::GAS) {
|
|
double solvent_fraction = well_ecl_->getSolventFraction(current_step_);
|
|
return solvent_fraction;
|
|
} else {
|
|
// Not a gas injection well => no solvent.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
wpolymer() const
|
|
{
|
|
if (!has_polymer) {
|
|
return 0.0;
|
|
}
|
|
|
|
WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_);
|
|
WellPolymerProperties polymer = well_ecl_->getPolymerProperties(current_step_);
|
|
|
|
if (injection.injectorType == WellInjector::WATER) {
|
|
const double polymer_injection_concentration = polymer.m_polymerConcentration;
|
|
return polymer_injection_concentration;
|
|
} else {
|
|
// Not a water injection well => no polymer.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
mostStrictBhpFromBhpLimits() const
|
|
{
|
|
double bhp;
|
|
|
|
// initial bhp value, making the value not usable
|
|
switch( well_type_ ) {
|
|
case INJECTOR:
|
|
bhp = std::numeric_limits<double>::max();
|
|
break;
|
|
case PRODUCER:
|
|
bhp = -std::numeric_limits<double>::max();
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name());
|
|
}
|
|
|
|
// The number of the well controls/constraints
|
|
const int nwc = well_controls_get_num(well_controls_);
|
|
|
|
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
|
// finding a BHP constraint
|
|
if (well_controls_iget_type(well_controls_, ctrl_index) == BHP) {
|
|
// get the bhp constraint value, it should always be postive assummingly
|
|
const double bhp_target = well_controls_iget_target(well_controls_, ctrl_index);
|
|
|
|
switch(well_type_) {
|
|
case INJECTOR: // using the lower bhp contraint from Injectors
|
|
if (bhp_target < bhp) {
|
|
bhp = bhp_target;
|
|
}
|
|
break;
|
|
case PRODUCER:
|
|
if (bhp_target > bhp) {
|
|
bhp = bhp_target;
|
|
}
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name());
|
|
} // end of switch
|
|
}
|
|
}
|
|
|
|
return bhp;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
wellHasTHPConstraints() const
|
|
{
|
|
const int nwc = well_controls_get_num(well_controls_);
|
|
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(well_controls_, ctrl_index) == THP) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellControl(WellState& well_state,
|
|
wellhelpers::WellSwitchingLogger& logger) const
|
|
{
|
|
const int np = number_of_phases_;
|
|
const int w = index_of_well_;
|
|
|
|
const int old_control_index = well_state.currentControls()[w];
|
|
|
|
// Find, for each well, if any constraints are broken. If so,
|
|
// switch control to first broken constraint.
|
|
WellControls* wc = well_controls_;
|
|
|
|
// Loop over all controls except the current one, and also
|
|
// skip any RESERVOIR_RATE controls, since we cannot
|
|
// handle those.
|
|
const int nwc = well_controls_get_num(wc);
|
|
// the current control index
|
|
int current = well_state.currentControls()[w];
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (ctrl_index == current) {
|
|
// This is the currently used control, so it is
|
|
// used as an equation. So this is not used as an
|
|
// inequality constraint, and therefore skipped.
|
|
continue;
|
|
}
|
|
if (wellhelpers::constraintBroken(
|
|
well_state.bhp(), well_state.thp(), well_state.wellRates(),
|
|
w, np, well_type_, wc, ctrl_index)) {
|
|
// ctrl_index will be the index of the broken constraint after the loop.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ctrl_index != nwc) {
|
|
// Constraint number ctrl_index was broken, switch to it.
|
|
well_state.currentControls()[w] = ctrl_index;
|
|
current = well_state.currentControls()[w];
|
|
well_controls_set_current( wc, current);
|
|
}
|
|
|
|
// the new well control indices after all the related updates,
|
|
const int updated_control_index = well_state.currentControls()[w];
|
|
|
|
// checking whether control changed
|
|
if (updated_control_index != old_control_index) {
|
|
logger.wellSwitched(name(),
|
|
well_controls_iget_type(wc, old_control_index),
|
|
well_controls_iget_type(wc, updated_control_index));
|
|
}
|
|
|
|
if (updated_control_index != old_control_index) { // || well_collection_->groupControlActive()) {
|
|
updateWellStateWithTarget(well_state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state) const
|
|
{
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
const int np = number_of_phases_;
|
|
|
|
if (econ_production_limits.onMinOilRate()) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
|
|
const double min_oil_rate = econ_production_limits.minOilRate();
|
|
if (std::abs(oil_rate) < min_oil_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinGasRate() ) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ];
|
|
const double min_gas_rate = econ_production_limits.minGasRate();
|
|
if (std::abs(gas_rate) < min_gas_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinLiquidRate() ) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
|
if (std::abs(liquid_rate) < min_liquid_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinReservoirFluidRate()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::RatioCheckTuple
|
|
WellInterface<TypeTag>::
|
|
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state) const
|
|
{
|
|
bool water_cut_limit_violated = false;
|
|
int worst_offending_completion = INVALIDCOMPLETION;
|
|
double violation_extent = -1.0;
|
|
|
|
const int np = number_of_phases_;
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
const int well_number = index_of_well_;
|
|
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
double water_cut;
|
|
if (std::abs(liquid_rate) != 0.) {
|
|
water_cut = water_rate / liquid_rate;
|
|
} else {
|
|
water_cut = 0.0;
|
|
}
|
|
|
|
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
|
if (water_cut > max_water_cut_limit) {
|
|
water_cut_limit_violated = true;
|
|
}
|
|
|
|
if (water_cut_limit_violated) {
|
|
// need to handle the worst_offending_connection
|
|
const int perf_start = first_perf_;
|
|
const int perf_number = number_of_perforations_;
|
|
|
|
std::vector<double> water_cut_perf(perf_number);
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
const int i_perf = perf_start + perf;
|
|
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
|
|
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
|
|
if (std::abs(liquid_perf_rate) != 0.) {
|
|
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
|
|
} else {
|
|
water_cut_perf[perf] = 0.;
|
|
}
|
|
}
|
|
const auto& completions = well_ecl_->getCompletions(current_step_);
|
|
const auto& connections = well_ecl_->getConnections(current_step_);
|
|
|
|
int complnumIdx = 0;
|
|
std::vector<double> water_cut_in_completions(completions.size(), 0.0);
|
|
for (const auto& completion : completions) {
|
|
int complnum = completion.first;
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
if (complnum == connections.get ( perf ).complnum) {
|
|
water_cut_in_completions[complnumIdx] += water_cut_perf[perf];
|
|
}
|
|
}
|
|
complnumIdx++;
|
|
}
|
|
|
|
double max_water_cut_perf = 0.;
|
|
complnumIdx = 0;
|
|
for (const auto& completion : completions) {
|
|
if (water_cut_in_completions[complnumIdx] > max_water_cut_perf) {
|
|
worst_offending_completion = completion.first;
|
|
max_water_cut_perf = water_cut_in_completions[complnumIdx];
|
|
}
|
|
complnumIdx++;
|
|
}
|
|
|
|
assert(max_water_cut_limit != 0.);
|
|
assert(worst_offending_completion != INVALIDCOMPLETION);
|
|
violation_extent = max_water_cut_perf / max_water_cut_limit;
|
|
}
|
|
|
|
return std::make_tuple(water_cut_limit_violated, worst_offending_completion, violation_extent);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::RatioCheckTuple
|
|
WellInterface<TypeTag>::
|
|
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state) const
|
|
{
|
|
// TODO: not sure how to define the worst-offending completion when more than one
|
|
// ratio related limit is violated.
|
|
// The defintion used here is that we define the violation extent based on the
|
|
// ratio between the value and the corresponding limit.
|
|
// For each violated limit, we decide the worst-offending completion separately.
|
|
// Among the worst-offending completions, we use the one has the biggest violation
|
|
// extent.
|
|
|
|
bool any_limit_violated = false;
|
|
int worst_offending_completion = INVALIDCOMPLETION;
|
|
double violation_extent = -1.0;
|
|
|
|
if (econ_production_limits.onMaxWaterCut()) {
|
|
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state);
|
|
bool water_cut_violated = std::get<0>(water_cut_return);
|
|
if (water_cut_violated) {
|
|
any_limit_violated = true;
|
|
const double violation_extent_water_cut = std::get<2>(water_cut_return);
|
|
if (violation_extent_water_cut > violation_extent) {
|
|
violation_extent = violation_extent_water_cut;
|
|
worst_offending_completion = std::get<1>(water_cut_return);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasOilRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
|
|
}
|
|
|
|
if (econ_production_limits.onMaxWaterGasRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
|
}
|
|
|
|
if (any_limit_violated) {
|
|
assert(worst_offending_completion != INVALIDCOMPLETION);
|
|
assert(violation_extent > 1.);
|
|
}
|
|
|
|
return std::make_tuple(any_limit_violated, worst_offending_completion, violation_extent);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellTestState(const WellState& well_state,
|
|
const double& simulationTime,
|
|
WellTestState& wellTestState,
|
|
const bool& writeMessageToOPMLog) const
|
|
{
|
|
// economic limits only apply for production wells.
|
|
if (wellType() != PRODUCER) {
|
|
return;
|
|
}
|
|
|
|
// flag to check if the mim oil/gas rate limit is violated
|
|
bool rate_limit_violated = false;
|
|
const WellEconProductionLimits& econ_production_limits = well_ecl_->getEconProductionLimits(current_step_);
|
|
|
|
// if no limit is effective here, then continue to the next well
|
|
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
|
return;
|
|
}
|
|
|
|
const std::string well_name = name();
|
|
|
|
// for the moment, we only handle rate limits, not handling potential limits
|
|
// the potential limits should not be difficult to add
|
|
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
|
|
if (quantity_limit == WellEcon::POTN) {
|
|
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
|
|
+ std::string("All the limits will be evaluated based on RATE. ");
|
|
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
|
|
}
|
|
|
|
if (econ_production_limits.onAnyRateLimit()) {
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state);
|
|
}
|
|
|
|
if (rate_limit_violated) {
|
|
if (econ_production_limits.endRun()) {
|
|
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
|
|
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
|
|
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
|
}
|
|
|
|
if (econ_production_limits.validFollowonWell()) {
|
|
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
|
}
|
|
|
|
wellTestState.addClosedWell(well_name, WellTestConfig::Reason::ECONOMIC, simulationTime);
|
|
if (writeMessageToOPMLog) {
|
|
if (well_ecl_->getAutomaticShutIn()) {
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be shut due to rate economic limit");
|
|
OpmLog::info(msg);
|
|
} else {
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to rate economic limit");
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
// the well is closed, not need to check other limits
|
|
return;
|
|
}
|
|
|
|
// checking for ratio related limits, mostly all kinds of ratio.
|
|
bool ratio_limits_violated = false;
|
|
RatioCheckTuple ratio_check_return;
|
|
|
|
if (econ_production_limits.onAnyRatioLimit()) {
|
|
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state);
|
|
ratio_limits_violated = std::get<0>(ratio_check_return);
|
|
}
|
|
|
|
if (ratio_limits_violated) {
|
|
const WellEcon::WorkoverEnum workover = econ_production_limits.workover();
|
|
switch (workover) {
|
|
case WellEcon::CON:
|
|
{
|
|
const int worst_offending_completion = std::get<1>(ratio_check_return);
|
|
|
|
wellTestState.addClosedCompletion(well_name, worst_offending_completion, simulationTime);
|
|
if (writeMessageToOPMLog) {
|
|
if (worst_offending_completion < 0) {
|
|
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion) + std::string(" for well ")
|
|
+ well_name + std::string(" will be closed due to economic limit");
|
|
OpmLog::info(msg);
|
|
} else {
|
|
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion) + std::string(" for well ")
|
|
+ well_name + std::string(" will be closed due to economic limit");
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
|
|
bool allCompletionsClosed = true;
|
|
const auto& connections = well_ecl_->getConnections(current_step_);
|
|
for (const auto& connection : connections) {
|
|
if (!wellTestState.hasCompletion(name(), connection.complnum)) {
|
|
allCompletionsClosed = false;
|
|
}
|
|
}
|
|
|
|
if (allCompletionsClosed) {
|
|
wellTestState.addClosedWell(well_name, WellTestConfig::Reason::ECONOMIC, simulationTime);
|
|
if (writeMessageToOPMLog) {
|
|
if (well_ecl_->getAutomaticShutIn()) {
|
|
const std::string msg = well_name + std::string(" will be shut due to last completion closed");
|
|
OpmLog::info(msg);
|
|
} else {
|
|
const std::string msg = well_name + std::string(" will be stopped due to last completion closed");
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case WellEcon::WELL:
|
|
{
|
|
wellTestState.addClosedWell(well_name, WellTestConfig::Reason::ECONOMIC, 0);
|
|
if (writeMessageToOPMLog) {
|
|
if (well_ecl_->getAutomaticShutIn()) {
|
|
// tell the controll that the well is closed
|
|
const std::string msg = well_name + std::string(" will be shut due to ratio economic limit");
|
|
OpmLog::info(msg);
|
|
} else {
|
|
const std::string msg = well_name + std::string(" will be stopped due to ratio economic limit");
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case WellEcon::NONE:
|
|
break;
|
|
default:
|
|
{
|
|
OpmLog::warning("NOT_SUPPORTED_WORKOVER_TYPE", "not supporting workover type " + WellEcon::WorkoverEnumToString(workover) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
computeRepRadiusPerfLength(const Grid& grid,
|
|
const std::map<int, int>& cartesian_to_compressed)
|
|
{
|
|
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
|
|
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
|
|
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
|
|
|
|
const int nperf = number_of_perforations_;
|
|
|
|
perf_rep_radius_.clear();
|
|
perf_length_.clear();
|
|
bore_diameters_.clear();
|
|
|
|
perf_rep_radius_.reserve(nperf);
|
|
perf_length_.reserve(nperf);
|
|
bore_diameters_.reserve(nperf);
|
|
|
|
// COMPDAT handling
|
|
const auto& connectionSet = well_ecl_->getConnections(current_step_);
|
|
for (size_t c=0; c<connectionSet.size(); c++) {
|
|
const auto& connection = connectionSet.get(c);
|
|
if (connection.state == WellCompletion::OPEN) {
|
|
const int i = connection.getI();
|
|
const int j = connection.getJ();
|
|
const int k = connection.getK();
|
|
|
|
const int* cpgdim = cart_dims;
|
|
const int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
|
|
const std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
|
|
if (cgit == cartesian_to_compressed.end()) {
|
|
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
|
|
<< k << " not found in grid (well = " << name() << ')');
|
|
}
|
|
const int cell = cgit->second;
|
|
|
|
{
|
|
double radius = 0.5*connection.getDiameter();
|
|
if (radius <= 0.0) {
|
|
radius = 0.5*unit::feet;
|
|
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
|
|
}
|
|
|
|
const std::array<double, 3> cubical =
|
|
WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
|
|
|
|
double re; // area equivalent radius of the grid block
|
|
double perf_length; // the length of the well perforation
|
|
|
|
switch (connection.dir) {
|
|
case Opm::WellCompletion::DirectionEnum::X:
|
|
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
|
|
perf_length = cubical[0];
|
|
break;
|
|
case Opm::WellCompletion::DirectionEnum::Y:
|
|
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
|
|
perf_length = cubical[1];
|
|
break;
|
|
case Opm::WellCompletion::DirectionEnum::Z:
|
|
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
|
|
perf_length = cubical[2];
|
|
break;
|
|
default:
|
|
OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
|
|
}
|
|
|
|
const double repR = std::sqrt(re * radius);
|
|
perf_rep_radius_.push_back(repR);
|
|
perf_length_.push_back(perf_length);
|
|
bore_diameters_.push_back(2. * radius);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::scalingFactor(const int phaseIdx) const
|
|
{
|
|
const WellControls* wc = well_controls_;
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
|
|
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
if (has_solvent && phaseIdx == contiSolventEqIdx ) {
|
|
typedef Ewoms::BlackOilSolventModule<TypeTag> SolventModule;
|
|
double coeff = 0;
|
|
rateConverter_.template calcCoeffSolvent<SolventModule>(0, pvtRegionIdx_, coeff);
|
|
return coeff;
|
|
}
|
|
// TODO: use the rateConverter here as well.
|
|
return distr[phaseIdx];
|
|
}
|
|
const auto& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
|
|
return 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
|
|
return 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
|
|
return 0.01;
|
|
if (has_solvent && phaseIdx == contiSolventEqIdx )
|
|
return 0.01;
|
|
|
|
// we should not come this far
|
|
assert(false);
|
|
return 1.0;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::calculateReservoirRates(WellState& well_state) const
|
|
{
|
|
const int fipreg = 0; // not considering the region for now
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> surface_rates(np, 0.0);
|
|
const int well_rate_index = np * index_of_well_;
|
|
for (int p = 0; p < np; ++p) {
|
|
surface_rates[p] = well_state.wellRates()[well_rate_index + p];
|
|
}
|
|
|
|
std::vector<double> voidage_rates(np, 0.0);
|
|
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellReservoirRates()[well_rate_index + p] = voidage_rates[p];
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::closeWellsAndCompletions(WellTestState& wellTestState)
|
|
{
|
|
if (wellTestState.hasWell(name(), WellTestConfig::Reason::ECONOMIC)) {
|
|
well_controls_stop_well(wellControls());
|
|
}
|
|
|
|
const auto& connections = well_ecl_->getConnections(current_step_);
|
|
int perfIdx = 0;
|
|
for (const auto& connection : connections) {
|
|
if (wellTestState.hasCompletion(name(), connection.complnum)) {
|
|
well_index_[perfIdx] = 0.0;
|
|
}
|
|
perfIdx++;
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
SimulatorReport
|
|
WellInterface<TypeTag>::solveWellEq(Simulator& ebosSimulator, WellState& well_state, const double dt, const std::vector<double>& B_avg, bool terminal_output)
|
|
{
|
|
const int max_iter = param_.max_welleq_iter_;
|
|
int it = 0;
|
|
bool converged;
|
|
WellState well_state0 = well_state;
|
|
do {
|
|
assembleWellEq(ebosSimulator, dt, well_state, true);
|
|
|
|
ConvergenceReport report;
|
|
report = getWellConvergence(B_avg);
|
|
converged = report.converged;
|
|
|
|
if (converged) {
|
|
break;
|
|
}
|
|
|
|
++it;
|
|
solveEqAndUpdateWellState(well_state);
|
|
|
|
wellhelpers::WellSwitchingLogger logger;
|
|
updateWellControl(well_state, logger);
|
|
initPrimaryVariablesEvaluation();
|
|
} while (it < max_iter);
|
|
|
|
if (converged) {
|
|
if ( terminal_output ) {
|
|
OpmLog::debug("Well equation for well " + name() + " solution gets converged with " + std::to_string(it) + " iterations");
|
|
}
|
|
} else {
|
|
if ( terminal_output ) {
|
|
OpmLog::debug("Well equation for well" +name() + " solution failed in getting converged with " + std::to_string(it) + " iterations");
|
|
well_state = well_state0;
|
|
updatePrimaryVariables(well_state);
|
|
// also recover the old well controls
|
|
//WellControls* wc = wellControls();
|
|
//well_controls_set_current(wc, well_state.currentControls()[indexOfWell()]);
|
|
}
|
|
|
|
}
|
|
|
|
SimulatorReport report;
|
|
report.converged = converged;
|
|
report.total_well_iterations = it;
|
|
return report;
|
|
|
|
}
|
|
|
|
}
|