opm-simulators/ebos/equil/equilibrationhelpers_impl.hh

638 lines
20 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <ebos/equil/equilibrationhelpers.hh>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/utility/numeric/RootFinders.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <fmt/format.h>
namespace Opm {
namespace EQUIL {
using FluidSystemSimple = BlackOilFluidSystem<double>;
// Adjust oil pressure according to gas saturation and cap pressure
using SatOnlyFluidState = SimpleModularFluidState<double,
/*numPhases=*/3,
/*numComponents=*/3,
FluidSystemSimple,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false>;
namespace Miscibility {
template<class FluidSystem>
RsVD<FluidSystem>::RsVD(const int pvtRegionIdx,
const std::vector<double>& depth,
const std::vector<double>& rs)
: pvtRegionIdx_(pvtRegionIdx)
, rsVsDepth_(depth, rs)
{
}
template<class FluidSystem>
double RsVD<FluidSystem>::
operator()(const double depth,
const double press,
const double temp,
const double satGas) const
{
const auto sat_rs = satRs(press, temp);
if (satGas > std::sqrt(std::numeric_limits<double>::epsilon())) {
return sat_rs;
}
else {
if (rsVsDepth_.xMin() > depth)
return std::min(sat_rs, rsVsDepth_.valueAt(0));
else if (rsVsDepth_.xMax() < depth)
return std::min(sat_rs, rsVsDepth_.valueAt(rsVsDepth_.numSamples() - 1));
return std::min(sat_rs, rsVsDepth_.eval(depth, /*extrapolate=*/false));
}
}
template<class FluidSystem>
double RsVD<FluidSystem>::satRs(const double press, const double temp) const
{
return FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_, temp, press);
}
template<class FluidSystem>
PBVD<FluidSystem>::PBVD(const int pvtRegionIdx,
const std::vector<double>& depth,
const std::vector<double>& pbub)
: pvtRegionIdx_(pvtRegionIdx)
, pbubVsDepth_(depth, pbub)
{
}
template<class FluidSystem>
double PBVD<FluidSystem>::
operator()(const double depth,
const double cellPress,
const double temp,
const double satGas) const
{
double press = cellPress;
if (satGas <= 0.0) {
if (pbubVsDepth_.xMin() > depth)
press = pbubVsDepth_.valueAt(0);
else if (pbubVsDepth_.xMax() < depth)
press = pbubVsDepth_.valueAt(pbubVsDepth_.numSamples() - 1);
else
press = pbubVsDepth_.eval(depth, /*extrapolate=*/false);
}
return satRs(std::min(press, cellPress), temp);
}
template<class FluidSystem>
double PBVD<FluidSystem>::
satRs(const double press, const double temp) const
{
return FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_, temp, press);
}
template<class FluidSystem>
PDVD<FluidSystem>::PDVD(const int pvtRegionIdx,
const std::vector<double>& depth,
const std::vector<double>& pdew)
: pvtRegionIdx_(pvtRegionIdx)
, pdewVsDepth_(depth, pdew)
{
}
template<class FluidSystem>
double PDVD<FluidSystem>::
operator()(const double depth,
const double cellPress,
const double temp,
const double satOil) const
{
double press = cellPress;
if (satOil <= 0.0) {
if (pdewVsDepth_.xMin() > depth)
press = pdewVsDepth_.valueAt(0);
else if (pdewVsDepth_.xMax() < depth)
press = pdewVsDepth_.valueAt(pdewVsDepth_.numSamples() - 1);
else
press = pdewVsDepth_.eval(depth, /*extrapolate=*/false);
}
return satRv(std::min(press, cellPress), temp);
}
template<class FluidSystem>
double PDVD<FluidSystem>::
satRv(const double press, const double temp) const
{
return FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp, press);
}
template<class FluidSystem>
RvVD<FluidSystem>::RvVD(const int pvtRegionIdx,
const std::vector<double>& depth,
const std::vector<double>& rv)
: pvtRegionIdx_(pvtRegionIdx)
, rvVsDepth_(depth, rv)
{
}
template<class FluidSystem>
double RvVD<FluidSystem>::
operator()(const double depth,
const double press,
const double temp,
const double satOil) const
{
if (satOil < - std::sqrt(std::numeric_limits<double>::epsilon())) {
throw std::logic_error {
"Must not pass negative oil saturation"
};
}
const auto sat_rv = satRv(press, temp);
if (satOil > std::sqrt(std::numeric_limits<double>::epsilon())) {
return sat_rv;
}
else {
if (rvVsDepth_.xMin() > depth)
return std::min(sat_rv, rvVsDepth_.valueAt(0));
else if (rvVsDepth_.xMax() < depth)
return std::min(sat_rv, rvVsDepth_.valueAt(rvVsDepth_.numSamples() - 1));
return std::min(sat_rv, rvVsDepth_.eval(depth, /*extrapolate=*/false));
}
}
template<class FluidSystem>
double RvVD<FluidSystem>::
satRv(const double press, const double temp) const
{
return FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp, press);
}
template<class FluidSystem>
RvwVD<FluidSystem>::RvwVD(const int pvtRegionIdx,
const std::vector<double>& depth,
const std::vector<double>& rvw)
: pvtRegionIdx_(pvtRegionIdx)
, rvwVsDepth_(depth, rvw)
{
}
template<class FluidSystem>
double RvwVD<FluidSystem>::
operator()(const double depth,
const double press,
const double temp,
const double satWat) const
{
if (satWat < - std::sqrt(std::numeric_limits<double>::epsilon())) {
throw std::logic_error {
"Must not pass negative water saturation"
};
}
const auto sat_rvw = satRvw(press, temp);
if (satWat > std::sqrt(std::numeric_limits<double>::epsilon())) {
return sat_rvw; //saturated Rvw
}
else {
if (rvwVsDepth_.xMin() > depth)
return std::min(sat_rvw,rvwVsDepth_.valueAt(0));
else if (rvwVsDepth_.xMax() < depth)
return std::min(sat_rvw, rvwVsDepth_.valueAt(rvwVsDepth_.numSamples() - 1));
return std::min(sat_rvw, rvwVsDepth_.eval(depth, /*extrapolate=*/false));
}
}
template<class FluidSystem>
double RvwVD<FluidSystem>::
satRvw(const double press, const double temp) const
{
return FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_, temp, press);
}
template<class FluidSystem>
RsSatAtContact<FluidSystem>::
RsSatAtContact(const int pvtRegionIdx, const double pContact, const double T_contact)
: pvtRegionIdx_(pvtRegionIdx)
{
rsSatContact_ = satRs(pContact, T_contact);
}
template<class FluidSystem>
double RsSatAtContact<FluidSystem>::
operator()(const double /* depth */,
const double press,
const double temp,
const double satGas) const
{
if (satGas > std::sqrt(std::numeric_limits<double>::epsilon())) {
return satRs(press, temp);
}
else {
return std::min(satRs(press, temp), rsSatContact_);
}
}
template<class FluidSystem>
double RsSatAtContact<FluidSystem>::
satRs(const double press, const double temp) const
{
return FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_, temp, press);
}
template<class FluidSystem>
RvSatAtContact<FluidSystem>::
RvSatAtContact(const int pvtRegionIdx, const double pContact, const double T_contact)
: pvtRegionIdx_(pvtRegionIdx)
{
rvSatContact_ = satRv(pContact, T_contact);
}
template<class FluidSystem>
double RvSatAtContact<FluidSystem>::
operator()(const double /*depth*/,
const double press,
const double temp,
const double satOil) const
{
if (satOil > std::sqrt(std::numeric_limits<double>::epsilon())) {
return satRv(press, temp);
}
else {
return std::min(satRv(press, temp), rvSatContact_);
}
}
template<class FluidSystem>
double RvSatAtContact<FluidSystem>::
satRv(const double press, const double temp) const
{
return FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp, press);;
}
template<class FluidSystem>
RvwSatAtContact<FluidSystem>::
RvwSatAtContact(const int pvtRegionIdx, const double pContact, const double T_contact)
: pvtRegionIdx_(pvtRegionIdx)
{
rvwSatContact_ = satRvw(pContact, T_contact);
}
template<class FluidSystem>
double RvwSatAtContact<FluidSystem>::
operator()(const double /*depth*/,
const double press,
const double temp,
const double satWat) const
{
if (satWat > std::sqrt(std::numeric_limits<double>::epsilon())) {
return satRvw(press, temp);
}
else {
return std::min(satRvw(press, temp), rvwSatContact_);
}
}
template<class FluidSystem>
double RvwSatAtContact<FluidSystem>::
satRvw(const double press, const double temp) const
{
return FluidSystem::gasPvt().saturatedWaterVaporizationFactor(pvtRegionIdx_, temp, press);;
}
} // namespace Miscibility
EquilReg::EquilReg(const EquilRecord& rec,
std::shared_ptr<Miscibility::RsFunction> rs,
std::shared_ptr<Miscibility::RsFunction> rv,
std::shared_ptr<Miscibility::RsFunction> rvw,
const TabulatedFunction& tempVdTable,
const TabulatedFunction& saltVdTable,
const int pvtIdx)
: rec_ (rec)
, rs_ (rs)
, rv_ (rv)
, rvw_ (rvw)
, tempVdTable_ (tempVdTable)
, saltVdTable_ (saltVdTable)
, pvtIdx_ (pvtIdx)
{
}
double EquilReg::datum() const
{
return this->rec_.datumDepth();
}
double EquilReg::pressure() const
{
return this->rec_.datumDepthPressure();
}
double EquilReg::zwoc() const
{
return this->rec_.waterOilContactDepth();
}
double EquilReg::pcowWoc() const
{
return this->rec_.waterOilContactCapillaryPressure();
}
double EquilReg::zgoc() const
{
return this->rec_.gasOilContactDepth();
}
double EquilReg::pcgoGoc() const
{
return this->rec_.gasOilContactCapillaryPressure();
}
int EquilReg::equilibrationAccuracy() const
{
return this->rec_.initializationTargetAccuracy();
}
const EquilReg::CalcDissolution&
EquilReg::dissolutionCalculator() const
{
return *this->rs_;
}
const EquilReg::CalcEvaporation&
EquilReg::evaporationCalculator() const
{
return *this->rv_;
}
const EquilReg::CalcWaterEvaporation&
EquilReg::waterEvaporationCalculator() const
{
return *this->rvw_;
}
const EquilReg::TabulatedFunction&
EquilReg::saltVdTable() const
{
return saltVdTable_;
}
const EquilReg::TabulatedFunction&
EquilReg::tempVdTable() const
{
return tempVdTable_;
}
int EquilReg::pvtIdx() const
{
return this->pvtIdx_;
}
template<class FluidSystem, class MaterialLawManager>
PcEq<FluidSystem,MaterialLawManager>::
PcEq(const MaterialLawManager& materialLawManager,
const int phase,
const int cell,
const double targetPc)
: materialLawManager_(materialLawManager),
phase_(phase),
cell_(cell),
targetPc_(targetPc)
{
}
template<class FluidSystem, class MaterialLawManager>
double PcEq<FluidSystem,MaterialLawManager>::
operator()(double s) const
{
const auto& matParams = materialLawManager_.materialLawParams(cell_);
SatOnlyFluidState fluidState;
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 0.0);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
fluidState.setSaturation(phase_, s);
std::array<double, FluidSystem::numPhases> pc{0.0};
using MaterialLaw = typename MaterialLawManager::MaterialLaw;
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
double sign = (phase_ == FluidSystem::waterPhaseIdx)? -1.0 : 1.0;
double pcPhase = pc[FluidSystem::oilPhaseIdx] + sign * pc[phase_];
return pcPhase - targetPc_;
}
template<class FluidSystem, class MaterialLawManager>
PcEqSum<FluidSystem,MaterialLawManager>::
PcEqSum(const MaterialLawManager& materialLawManager,
const int phase1,
const int phase2,
const int cell,
const double targetPc)
: materialLawManager_(materialLawManager),
phase1_(phase1),
phase2_(phase2),
cell_(cell),
targetPc_(targetPc)
{
}
template<class FluidSystem, class MaterialLawManager>
double PcEqSum<FluidSystem,MaterialLawManager>::
operator()(double s) const
{
const auto& matParams = materialLawManager_.materialLawParams(cell_);
SatOnlyFluidState fluidState;
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 0.0);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
fluidState.setSaturation(phase1_, s);
fluidState.setSaturation(phase2_, 1.0 - s);
std::array<double, FluidSystem::numPhases> pc {0.0};
using MaterialLaw = typename MaterialLawManager::MaterialLaw;
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
double sign1 = (phase1_ == FluidSystem::waterPhaseIdx)? -1.0 : 1.0;
double pc1 = pc[FluidSystem::oilPhaseIdx] + sign1 * pc[phase1_];
double sign2 = (phase2_ == FluidSystem::waterPhaseIdx)? -1.0 : 1.0;
double pc2 = pc[FluidSystem::oilPhaseIdx] + sign2 * pc[phase2_];
return pc1 + pc2 - targetPc_;
}
template <class FluidSystem, class MaterialLawManager>
double minSaturations(const MaterialLawManager& materialLawManager,
const int phase, const int cell)
{
const auto& scaledDrainageInfo =
materialLawManager.oilWaterScaledEpsInfoDrainage(cell);
// Find minimum and maximum saturations.
switch(phase) {
case FluidSystem::waterPhaseIdx:
return scaledDrainageInfo.Swl;
case FluidSystem::gasPhaseIdx:
return scaledDrainageInfo.Sgl;
case FluidSystem::oilPhaseIdx:
throw std::runtime_error("Min saturation not implemented for oil phase.");
default:
throw std::runtime_error("Unknown phaseIdx .");
}
return -1.0;
}
template <class FluidSystem, class MaterialLawManager>
double maxSaturations(const MaterialLawManager& materialLawManager,
const int phase, const int cell)
{
const auto& scaledDrainageInfo =
materialLawManager.oilWaterScaledEpsInfoDrainage(cell);
// Find minimum and maximum saturations.
switch(phase) {
case FluidSystem::waterPhaseIdx:
return scaledDrainageInfo.Swu;
case FluidSystem::gasPhaseIdx:
return scaledDrainageInfo.Sgu;
case FluidSystem::oilPhaseIdx:
throw std::runtime_error("Max saturation not implemented for oil phase.");
default:
throw std::runtime_error("Unknown phaseIdx .");
}
return -1.0;
}
template <class FluidSystem, class MaterialLawManager>
double satFromPc(const MaterialLawManager& materialLawManager,
const int phase,
const int cell,
const double targetPc,
const bool increasing)
{
// Find minimum and maximum saturations.
double s0 = increasing ? maxSaturations<FluidSystem>(materialLawManager, phase, cell) : minSaturations<FluidSystem>(materialLawManager, phase, cell);
double s1 = increasing ? minSaturations<FluidSystem>(materialLawManager, phase, cell) : maxSaturations<FluidSystem>(materialLawManager, phase, cell);
// Create the equation f(s) = pc(s) - targetPc
const PcEq<FluidSystem, MaterialLawManager> f(materialLawManager, phase, cell, targetPc);
double f0 = f(s0);
double f1 = f(s1);
if (!std::isfinite(f0 + f1))
throw std::logic_error(fmt::format("The capillary pressure values {} and {} are not finite", f0, f1));
if (f0 <= 0.0)
return s0;
else if (f1 >= 0.0)
return s1;
const double tol = 1e-10;
// should at least converge in 2 times bisection but some safety here:
const int maxIter = -2*static_cast<int>(std::log2(tol)) + 10;
int usedIterations = -1;
const double root = RegulaFalsiBisection<ThrowOnError>::solve(f, s0, s1, maxIter, tol, usedIterations);
return root;
}
template<class FluidSystem, class MaterialLawManager>
double satFromSumOfPcs(const MaterialLawManager& materialLawManager,
const int phase1,
const int phase2,
const int cell,
const double targetPc)
{
// Find minimum and maximum saturations.
double s0 = minSaturations<FluidSystem>(materialLawManager, phase1, cell);
double s1 = maxSaturations<FluidSystem>(materialLawManager, phase1, cell);
// Create the equation f(s) = pc1(s) + pc2(1-s) - targetPc
const PcEqSum<FluidSystem, MaterialLawManager> f(materialLawManager, phase1, phase2, cell, targetPc);
double f0 = f(s0);
double f1 = f(s1);
if (f0 <= 0.0)
return s0;
else if (f1 >= 0.0)
return s1;
assert(f0 > 0.0 && f1 < 0.0);
const double tol = 1e-10;
// should at least converge in 2 times bisection but some safety here:
const int maxIter = -2*static_cast<int>(std::log2(tol)) + 10;
int usedIterations = -1;
const double root = RegulaFalsiBisection<ThrowOnError>::solve(f, s0, s1, maxIter, tol, usedIterations);
return root;
}
template<class FluidSystem, class MaterialLawManager>
double satFromDepth(const MaterialLawManager& materialLawManager,
const double cellDepth,
const double contactDepth,
const int phase,
const int cell,
const bool increasing)
{
const double s0 = increasing ? maxSaturations<FluidSystem>(materialLawManager, phase, cell) : minSaturations<FluidSystem>(materialLawManager, phase, cell);
const double s1 = increasing ? minSaturations<FluidSystem>(materialLawManager, phase, cell) : maxSaturations<FluidSystem>(materialLawManager, phase, cell);
if (cellDepth < contactDepth) {
return s0;
}
else {
return s1;
}
}
template<class FluidSystem, class MaterialLawManager>
bool isConstPc(const MaterialLawManager& materialLawManager,
const int phase,
const int cell)
{
// Create the equation f(s) = pc(s);
const PcEq<FluidSystem, MaterialLawManager> f(materialLawManager, phase, cell, 0);
const double f0 = f(minSaturations<FluidSystem>(materialLawManager, phase, cell));
const double f1 = f(maxSaturations<FluidSystem>(materialLawManager, phase, cell));
return std::abs(f0 - f1) < std::numeric_limits<double>::epsilon();
}
}
}