opm-simulators/opm/simulators/wells/MultisegmentWellPrimaryVariables.hpp
Arne Morten Kvarving 1f4b248564 WellInterfaceIndices: remove unnecessary Scalar template parameter
use the Scalar type from the FluidSystem
2024-03-08 15:13:53 +01:00

183 lines
7.3 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELL_PRIMARY_VARIABLES_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_PRIMARY_VARIABLES_HEADER_INCLUDED
#include <opm/material/densead/Evaluation.hpp>
#include <opm/simulators/wells/MultisegmentWellEquations.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <array>
#include <cstddef>
#include <vector>
namespace Opm
{
class DeferredLogger;
template<class Scalar> class MultisegmentWellGeneric;
template<class FluidSystem, class Indices> class WellInterfaceIndices;
class WellState;
template<class FluidSystem, class Indices>
class MultisegmentWellPrimaryVariables
{
public:
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
// TODO: we need to have order for the primary variables and also the order for the well equations.
// sometimes, they are similar, while sometimes, they can have very different forms.
// Table showing the primary variable indices, depending on what phases are present:
//
// WOG OG WG WO W/O/G (single phase)
// WQTotal 0 0 0 0 0
// WFrac 1 -1000 1 1 -1000
// GFrac 2 1 -1000 -1000 -1000
// Spres 3 2 2 2 1
static constexpr bool has_water = (Indices::waterSwitchIdx >= 0);
static constexpr bool has_gas = (Indices::compositionSwitchIdx >= 0);
static constexpr bool has_oil = (Indices::numPhases - has_gas - has_water) > 0;
// In the implementation, one should use has_wfrac_variable
// rather than has_water to check if you should do something
// with the variable at the WFrac location, similar for GFrac.
static constexpr bool has_wfrac_variable = has_water && Indices::numPhases > 1;
static constexpr bool has_gfrac_variable = has_gas && has_oil;
static constexpr int WQTotal = 0;
static constexpr int WFrac = has_wfrac_variable ? 1 : -1000;
static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000;
static constexpr int SPres = has_wfrac_variable + has_gfrac_variable + 1;
// the number of well equations TODO: it should have a more general strategy for it
static constexpr int numWellEq = Indices::numPhases + 1;
using Scalar = typename FluidSystem::Scalar;
using EvalWell = DenseAd::Evaluation<double, /*size=*/Indices::numEq + numWellEq>;
using Equations = MultisegmentWellEquations<Scalar,numWellEq,Indices::numEq>;
using BVectorWell = typename Equations::BVectorWell;
MultisegmentWellPrimaryVariables(const WellInterfaceIndices<FluidSystem,Indices>& well)
: well_(well)
{}
//! \brief Resize values and evaluations.
void resize(const int numSegments);
//! \brief Initialize evaluations from values.
void init();
//! \brief Copy values from well state.
void update(const WellState& well_state, const bool stop_or_zero_rate_target);
//! \brief Update values from newton update vector.
void updateNewton(const BVectorWell& dwells,
const double relaxation_factor,
const double DFLimit,
const bool stop_or_zero_rate_target,
const double max_pressure_change);
//! \brief Copy values to well state.
void copyToWellState(const MultisegmentWellGeneric<Scalar>& mswell,
const double rho,
const bool stop_or_zero_rate_target,
WellState& well_state,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
//! \brief Returns scaled volume fraction for a component in a segment.
//! \details F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p
EvalWell volumeFractionScaled(const int seg,
const int compIdx) const;
//! \brief Returns surface volume fraction for a component in a segment.
//! \details basically Q_p / \sigma_p Q_p
EvalWell surfaceVolumeFraction(const int seg,
const int compIdx) const;
//! \brief Returns upwinding rate for a component in a segment.
EvalWell getSegmentRateUpwinding(const int seg,
const int seg_upwind,
const std::size_t comp_idx) const;
//! \brief Get bottomhole pressure.
EvalWell getBhp() const;
//! \brief Get pressure for a segment.
EvalWell getSegmentPressure(const int seg) const;
//! \brief Get rate for a component in a segment.
EvalWell getSegmentRate(const int seg,
const int comp_idx) const;
//! \brief Returns scaled rate for a component.
EvalWell getQs(const int comp_idx) const;
//! \brief Get WQTotal.
EvalWell getWQTotal() const;
//! \brief Returns a const ref to an array of evaluations.
const std::array<EvalWell, numWellEq>& eval(const int idx) const
{ return evaluation_[idx]; }
//! \brief Returns a value array.
const std::array<Scalar, numWellEq>& value(const int idx) const
{ return value_[idx]; }
//! \brief Set a value array. Note that this does not also set the corresponding evaluation.
void setValue(const int idx, const std::array<Scalar, numWellEq>& val)
{ value_[idx] = val; }
//! output the segments with pressure close to lower pressure limit for debugging purpose
void outputLowLimitPressureSegments(DeferredLogger& deferred_logger) const;
private:
//! \brief Handle non-reasonable fractions due to numerical overshoot.
void processFractions(const int seg);
//! \brief Returns volume fraction for component in a segment.
EvalWell volumeFraction(const int seg,
const unsigned compIdx) const;
//! \brief The values for the primary variables
//! \details Based on different solution strategies, the wells can have different primary variables
std::vector<std::array<double, numWellEq>> value_;
//! \brief The Evaluation for the well primary variables.
//! \details Contains derivatives and are used in AD calculation
std::vector<std::array<EvalWell, numWellEq>> evaluation_;
const WellInterfaceIndices<FluidSystem,Indices>& well_; //!< Reference to well interface
static constexpr double bhp_lower_limit = 1. * unit::barsa - 1. * unit::Pascal;
static constexpr double seg_pres_lower_limit = 0.;
};
}
#endif // OPM_MULTISEGMENTWELL_PRIMARY_VARIABLES_HEADER_INCLUDED