opm-simulators/examples/problems/outflowproblem.hh
Andreas Lauser 69e6fb60a2 rename the tests/grids folder to tests/data
... since the "grids" in that folder are slowly accumulating
information. (e.g. the ART grid for the fracture mapper and ECLIPSE
decks in the future.)
2014-05-08 15:31:32 +02:00

317 lines
9.5 KiB
C++

/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Ewoms::OutflowProblem
*/
#ifndef EWOMS_OUTFLOW_PROBLEM_HH
#define EWOMS_OUTFLOW_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2ON2LiquidPhaseFluidSystem.hpp>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Ewoms {
template <class TypeTag>
class OutflowProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(OutflowBaseProblem);
// Set the grid type
SET_TYPE_PROP(OutflowBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(OutflowBaseProblem, Problem, Ewoms::OutflowProblem<TypeTag>);
// Set fluid system
SET_PROP(OutflowBaseProblem, FluidSystem)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
// Two-component single phase fluid system
typedef Opm::FluidSystems::H2ON2LiquidPhase<Scalar> type;
};
// Disable gravity
SET_BOOL_PROP(OutflowBaseProblem, EnableGravity, false);
// Also write mass fractions to the output
SET_BOOL_PROP(OutflowBaseProblem, VtkWriteMassFractions, true);
// The default for the end time of the simulation
SET_SCALAR_PROP(OutflowBaseProblem, EndTime, 100);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(OutflowBaseProblem, InitialTimeStepSize, 1);
// The default DGF file to load
SET_STRING_PROP(OutflowBaseProblem, GridFile, "./data/outflow.dgf");
} // namespace Properties
} // namespace Opm
namespace Ewoms {
/*!
* \ingroup VcfvTestProblems
*
* \brief Problem where dissolved nitrogen is transported with the water
* phase from the left side to the right.
*
* The model domain is 1m times 1m and exhibits homogeneous soil
* properties (\f$ \mathrm{K=10e-10, \Phi=0.4}\f$). Initially the
* domain is fully saturated by water without any nitrogen dissolved.
*
* At the left side, a free-flow condition defines a nitrogen mole
* fraction of 0.02%. The water phase flows from the left side to the
* right due to the imposed pressure gradient of \f$1e5\,Pa/m\f$. The
* nitrogen is transported with the water flow and leaves the domain
* at the right boundary where an outflow boundary condition is
* used.
*/
template <class TypeTag>
class OutflowProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
// copy some indices for convenience
enum {
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
// component indices
H2OIdx = FluidSystem::H2OIdx,
N2Idx = FluidSystem::N2Idx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
OutflowProblem(Simulator &simulator)
: ParentType(simulator)
, eps_(1e-6)
{
temperature_ = 273.15 + 20;
FluidSystem::init(/*minT=*/temperature_ - 1, /*maxT=*/temperature_ + 2,
/*numT=*/3,
/*minp=*/0.8e5, /*maxp=*/2.5e5, /*nump=*/500);
// set parameters of porous medium
perm_ = this->toDimMatrix_(1e-10);
porosity_ = 0.4;
tortuosity_ = 0.28;
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc VcfvProblem::name
*/
std::string name() const
{ return "outflow"; }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*
* This problem assumes a temperature.
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return temperature_; } // in [K]
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* This problem uses a constant intrinsic permeability.
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
int timeIdx) const
{ return perm_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* This problem uses a constant porosity.
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{ return porosity_; }
#if 0
/*!
* \brief Define the tortuosity \f$[?]\f$.
*
*/
template <class Context>
Scalar tortuosity(const Context &context, int spaceIdx, int timeIdx) const
{ return tortuosity_; }
/*!
* \brief Define the dispersivity \f$[?]\f$.
*
*/
template <class Context>
Scalar dispersivity(const Context &context,
int spaceIdx, int timeIdx) const
{ return 0; }
#endif
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc VcfvProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(globalPos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
fs.setPressure(/*phaseIdx=*/0, fs.pressure(/*phaseIdx=*/0) + 1e5);
Scalar xlN2 = 2e-4;
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, xlN2);
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1 - xlN2);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onRightBoundary_(globalPos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// impose an outflow boundary condition
values.setOutFlow(context, spaceIdx, timeIdx, fs);
}
else
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volume terms
*/
//! \{
/*!
* \copydoc VcfvProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
int timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem, /*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.assignNaive(fs);
}
/*!
* \copydoc VcfvProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, int spaceIdx,
int timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
template <class FluidState, class Context>
void initialFluidState_(FluidState &fs, const Context &context,
int spaceIdx, int timeIdx) const
{
Scalar T = temperature(context, spaceIdx, timeIdx);
// Scalar rho = FluidSystem::H2O::liquidDensity(T, /*pressure=*/1.5e5);
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
// this->boundingBoxMax()[dim - 1];
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
// this->boundingBoxMax()[dim - 1];
fs.setSaturation(/*phaseIdx=*/0, 1.0);
fs.setPressure(/*phaseIdx=*/0, 1e5 /* + rho*z */);
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1.0);
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, 0);
fs.setTemperature(T);
}
const Scalar eps_;
MaterialLawParams materialParams_;
DimMatrix perm_;
Scalar temperature_;
Scalar porosity_;
Scalar tortuosity_;
};
} // namespace Ewoms
#endif