mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-19 16:12:58 -06:00
490 lines
18 KiB
C++
490 lines
18 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief Classes required for molecular diffusion.
|
|
*/
|
|
#ifndef EWOMS_DIFFUSION_MODULE_HH
|
|
#define EWOMS_DIFFUSION_MODULE_HH
|
|
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
#include <opm/models/common/quantitycallbacks.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup Diffusion
|
|
* \class Opm::DiffusionModule
|
|
* \brief Provides the auxiliary methods required for consideration of the
|
|
* diffusion equation.
|
|
*/
|
|
template <class TypeTag, bool enableDiffusion>
|
|
class DiffusionModule;
|
|
|
|
/*!
|
|
* \copydoc Opm::DiffusionModule
|
|
*/
|
|
template <class TypeTag>
|
|
class DiffusionModule<TypeTag, /*enableDiffusion=*/false>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Register all run-time parameters for the diffusion module.
|
|
*/
|
|
static void registerParameters()
|
|
{}
|
|
|
|
/*!
|
|
* \brief Adds the diffusive mass flux flux to the flux vector over a flux
|
|
* integration point.
|
|
*/
|
|
template <class Context>
|
|
static void addDiffusiveFlux(RateVector&,
|
|
const Context&,
|
|
unsigned,
|
|
unsigned)
|
|
{}
|
|
};
|
|
|
|
/*!
|
|
* \copydoc Opm::DiffusionModule
|
|
*/
|
|
template <class TypeTag>
|
|
class DiffusionModule<TypeTag, /*enableDiffusion=*/true>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Register all run-time parameters for the diffusion module.
|
|
*/
|
|
static void registerParameters()
|
|
{}
|
|
|
|
/*!
|
|
* \brief Adds the mass flux due to molecular diffusion to the flux vector over the
|
|
* flux integration point.
|
|
*/
|
|
template <class Context>
|
|
static void addDiffusiveFlux(RateVector& flux, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx)
|
|
{
|
|
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
|
|
|
|
const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
|
|
const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// arithmetic mean of the phase's molar density
|
|
Evaluation rhoMolar = fluidStateI.molarDensity(phaseIdx);
|
|
rhoMolar += Toolbox::value(fluidStateJ.molarDensity(phaseIdx));
|
|
rhoMolar /= 2;
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
// mass flux due to molecular diffusion
|
|
flux[conti0EqIdx + compIdx] +=
|
|
-rhoMolar
|
|
* extQuants.moleFractionGradientNormal(phaseIdx, compIdx)
|
|
* extQuants.effectiveDiffusionCoefficient(phaseIdx, compIdx);
|
|
}
|
|
}
|
|
};
|
|
|
|
/*!
|
|
* \ingroup Diffusion
|
|
* \class Opm::DiffusionIntensiveQuantities
|
|
*
|
|
* \brief Provides the volumetric quantities required for the
|
|
* calculation of molecular diffusive fluxes.
|
|
*/
|
|
template <class TypeTag, bool enableDiffusion>
|
|
class DiffusionIntensiveQuantities;
|
|
|
|
/*!
|
|
* \copydoc Opm::DiffusionIntensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class DiffusionIntensiveQuantities<TypeTag, /*enableDiffusion=*/false>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Returns the tortuousity of the sub-domain of a fluid
|
|
* phase in the porous medium.
|
|
*/
|
|
Scalar tortuosity(unsigned) const
|
|
{
|
|
throw std::logic_error("Method tortuosity() does not make sense "
|
|
"if diffusion is disabled");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the molecular diffusion coefficient for a
|
|
* component in a phase.
|
|
*/
|
|
Scalar diffusionCoefficient(unsigned, unsigned) const
|
|
{
|
|
throw std::logic_error("Method diffusionCoefficient() does not "
|
|
"make sense if diffusion is disabled");
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the effective molecular diffusion coefficient of
|
|
* the porous medium for a component in a phase.
|
|
*/
|
|
Scalar effectiveDiffusionCoefficient(unsigned, unsigned) const
|
|
{
|
|
throw std::logic_error("Method effectiveDiffusionCoefficient() "
|
|
"does not make sense if diffusion is disabled");
|
|
}
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate diffusive
|
|
* mass fluxes.
|
|
*/
|
|
template <class FluidState>
|
|
void update_(FluidState&,
|
|
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>&,
|
|
const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{ }
|
|
};
|
|
|
|
/*!
|
|
* \copydoc Opm::DiffusionIntensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class DiffusionIntensiveQuantities<TypeTag, /*enableDiffusion=*/true>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
|
|
public:
|
|
/*!
|
|
* \brief Returns the molecular diffusion coefficient for a
|
|
* component in a phase.
|
|
*/
|
|
Evaluation diffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
|
|
{ return diffusionCoefficient_[phaseIdx][compIdx]; }
|
|
|
|
/*!
|
|
* \brief Returns the tortuousity of the sub-domain of a fluid
|
|
* phase in the porous medium.
|
|
*/
|
|
Evaluation tortuosity(unsigned phaseIdx) const
|
|
{ return tortuosity_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief Returns the effective molecular diffusion coefficient of
|
|
* the porous medium for a component in a phase.
|
|
*/
|
|
Evaluation effectiveDiffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
|
|
{ return tortuosity_[phaseIdx] * diffusionCoefficient_[phaseIdx][compIdx]; }
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate diffusive
|
|
* mass fluxes.
|
|
*/
|
|
template <class FluidState>
|
|
void update_(FluidState& fluidState,
|
|
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
|
|
continue;
|
|
|
|
// TODO: let the problem do this (this is a constitutive
|
|
// relation of which the model should be free of from the
|
|
// abstraction POV!)
|
|
// Based on Millington, R. J., & Quirk, J. P. (1961).
|
|
const Evaluation& base =
|
|
Toolbox::max(0.0001,
|
|
intQuants.porosity()
|
|
* intQuants.fluidState().saturation(phaseIdx));
|
|
tortuosity_[phaseIdx] =
|
|
1.0 / (intQuants.porosity() * intQuants.porosity())
|
|
* Toolbox::pow(base, 10.0/3.0);
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
diffusionCoefficient_[phaseIdx][compIdx] =
|
|
FluidSystem::diffusionCoefficient(fluidState,
|
|
paramCache,
|
|
phaseIdx,
|
|
compIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
Evaluation tortuosity_[numPhases];
|
|
Evaluation diffusionCoefficient_[numPhases][numComponents];
|
|
};
|
|
|
|
/*!
|
|
* \ingroup Diffusion
|
|
* \class Opm::DiffusionExtensiveQuantities
|
|
*
|
|
* \brief Provides the quantities required to calculate diffusive mass fluxes.
|
|
*/
|
|
template <class TypeTag, bool enableDiffusion>
|
|
class DiffusionExtensiveQuantities;
|
|
|
|
/*!
|
|
* \copydoc Opm::DiffusionExtensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class DiffusionExtensiveQuantities<TypeTag, /*enableDiffusion=*/false>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate
|
|
* the diffusive mass fluxes.
|
|
*/
|
|
void update_(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{}
|
|
|
|
template <class Context, class FluidState>
|
|
void updateBoundary_(const Context&,
|
|
unsigned,
|
|
unsigned,
|
|
const FluidState&)
|
|
{}
|
|
|
|
public:
|
|
/*!
|
|
* \brief The the gradient of the mole fraction times the face normal.
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Evaluation& moleFractionGradientNormal(unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("The method moleFractionGradient() does not "
|
|
"make sense if diffusion is disabled.");
|
|
}
|
|
|
|
/*!
|
|
* \brief The effective diffusion coeffcient of a component in a
|
|
* fluid phase at the face's integration point
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Evaluation& effectiveDiffusionCoefficient(unsigned,
|
|
unsigned) const
|
|
{
|
|
throw std::logic_error("The method effectiveDiffusionCoefficient() "
|
|
"does not make sense if diffusion is disabled.");
|
|
}
|
|
};
|
|
|
|
/*!
|
|
* \copydoc Opm::DiffusionExtensiveQuantities
|
|
*/
|
|
template <class TypeTag>
|
|
class DiffusionExtensiveQuantities<TypeTag, /*enableDiffusion=*/true>
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the quantities required to calculate
|
|
* the diffusive mass fluxes.
|
|
*/
|
|
void update_(const ElementContext& elemCtx, unsigned faceIdx, unsigned timeIdx)
|
|
{
|
|
const auto& gradCalc = elemCtx.gradientCalculator();
|
|
Opm::MoleFractionCallback<TypeTag> moleFractionCallback(elemCtx);
|
|
|
|
const auto& face = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
|
|
const auto& normal = face.normal();
|
|
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, timeIdx);
|
|
|
|
const auto& intQuantsInside = elemCtx.intensiveQuantities(extQuants.interiorIndex(), timeIdx);
|
|
const auto& intQuantsOutside = elemCtx.intensiveQuantities(extQuants.exteriorIndex(), timeIdx);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
|
|
continue;
|
|
|
|
moleFractionCallback.setPhaseIndex(phaseIdx);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
moleFractionCallback.setComponentIndex(compIdx);
|
|
|
|
DimEvalVector moleFractionGradient(0.0);
|
|
gradCalc.calculateGradient(moleFractionGradient,
|
|
elemCtx,
|
|
faceIdx,
|
|
moleFractionCallback);
|
|
|
|
moleFractionGradientNormal_[phaseIdx][compIdx] = 0.0;
|
|
for (unsigned i = 0; i < normal.size(); ++i)
|
|
moleFractionGradientNormal_[phaseIdx][compIdx] +=
|
|
normal[i]*moleFractionGradient[i];
|
|
Opm::Valgrind::CheckDefined(moleFractionGradientNormal_[phaseIdx][compIdx]);
|
|
|
|
// use the arithmetic average for the effective
|
|
// diffusion coefficients.
|
|
effectiveDiffusionCoefficient_[phaseIdx][compIdx] =
|
|
(intQuantsInside.effectiveDiffusionCoefficient(phaseIdx, compIdx)
|
|
+
|
|
intQuantsOutside.effectiveDiffusionCoefficient(phaseIdx, compIdx))
|
|
/ 2;
|
|
|
|
Opm::Valgrind::CheckDefined(effectiveDiffusionCoefficient_[phaseIdx][compIdx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Context, class FluidState>
|
|
void updateBoundary_(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& fluidState)
|
|
{
|
|
const auto& stencil = context.stencil(timeIdx);
|
|
const auto& face = stencil.boundaryFace(bfIdx);
|
|
|
|
const auto& elemCtx = context.elementContext();
|
|
unsigned insideScvIdx = face.interiorIndex();
|
|
const auto& insideScv = stencil.subControlVolume(insideScvIdx);
|
|
|
|
const auto& intQuantsInside = elemCtx.intensiveQuantities(insideScvIdx, timeIdx);
|
|
const auto& fluidStateInside = intQuantsInside.fluidState();
|
|
|
|
// distance between the center of the SCV and center of the boundary face
|
|
DimVector distVec = face.integrationPos();
|
|
distVec -= context.element().geometry().global(insideScv.localGeometry().center());
|
|
|
|
Scalar dist = distVec * face.normal();
|
|
|
|
// if the following assertation triggers, the center of the
|
|
// center of the interior SCV was not inside the element!
|
|
assert(dist > 0);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
|
|
continue;
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
// calculate mole fraction gradient using two-point
|
|
// gradients
|
|
moleFractionGradientNormal_[phaseIdx][compIdx] =
|
|
(fluidState.moleFraction(phaseIdx, compIdx)
|
|
-
|
|
fluidStateInside.moleFraction(phaseIdx, compIdx))
|
|
/ dist;
|
|
Opm::Valgrind::CheckDefined(moleFractionGradientNormal_[phaseIdx][compIdx]);
|
|
|
|
// use effective diffusion coefficients of the interior finite
|
|
// volume.
|
|
effectiveDiffusionCoefficient_[phaseIdx][compIdx] =
|
|
intQuantsInside.effectiveDiffusionCoefficient(phaseIdx, compIdx);
|
|
|
|
Opm::Valgrind::CheckDefined(effectiveDiffusionCoefficient_[phaseIdx][compIdx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
/*!
|
|
* \brief The the gradient of the mole fraction times the face normal.
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Evaluation& moleFractionGradientNormal(unsigned phaseIdx, unsigned compIdx) const
|
|
{ return moleFractionGradientNormal_[phaseIdx][compIdx]; }
|
|
|
|
/*!
|
|
* \brief The effective diffusion coeffcient of a component in a
|
|
* fluid phase at the face's integration point
|
|
*
|
|
* \copydoc Doxygen::phaseIdxParam
|
|
* \copydoc Doxygen::compIdxParam
|
|
*/
|
|
const Evaluation& effectiveDiffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
|
|
{ return effectiveDiffusionCoefficient_[phaseIdx][compIdx]; }
|
|
|
|
private:
|
|
Evaluation moleFractionGradientNormal_[numPhases][numComponents];
|
|
Evaluation effectiveDiffusionCoefficient_[numPhases][numComponents];
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|