opm-simulators/ebos/eclgenericcpgridvanguard.cc
2022-07-28 20:40:34 +02:00

526 lines
20 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <ebos/eclgenericcpgridvanguard.hh>
#if HAVE_MPI
#include <ebos/eclmpiserializer.hh>
#endif
#include <opm/simulators/utils/ParallelEclipseState.hpp>
#include <opm/simulators/utils/ParallelSerialization.hpp>
#include <opm/simulators/utils/PropsCentroidsDataHandle.hpp>
#include <opm/grid/cpgrid/GridHelpers.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/common/utility/ActiveGridCells.hpp>
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/grid/common/partitionset.hh>
#include <dune/common/version.hh>
#if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
#include <ebos/femcpgridcompat.hh>
#endif //HAVE_DUNE_FEM
#include <cassert>
#include <numeric>
#include <optional>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <vector>
#include <fmt/format.h>
namespace Opm {
std::optional<std::function<std::vector<int> (const Dune::CpGrid&)>> externalLoadBalancer;
template<class ElementMapper, class GridView, class Scalar>
EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::EclGenericCpGridVanguard()
{
this->mpiRank = 0;
#if HAVE_MPI
this->mpiRank = EclGenericVanguard::comm().rank();
#endif // HAVE_MPI
}
template<class ElementMapper, class GridView, class Scalar>
void EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::releaseEquilGrid()
{
this->equilGrid_.reset();
this->equilCartesianIndexMapper_.reset();
}
#if HAVE_MPI
template<class ElementMapper, class GridView, class Scalar>
void EclGenericCpGridVanguard<ElementMapper, GridView, Scalar>::
doLoadBalance_(const Dune::EdgeWeightMethod edgeWeightsMethod,
const bool ownersFirst,
const bool serialPartitioning,
const bool enableDistributedWells,
const double zoltanImbalanceTol,
const GridView& gridView,
const Schedule& schedule,
std::vector<double>& centroids,
EclipseState& eclState1,
EclGenericVanguard::ParallelWellStruct& parallelWells,
const int numJacobiBlocks)
{
const auto mpiSize = this->grid_->comm().size();
const auto partitionJacobiBlocks =
(numJacobiBlocks > 1) && (mpiSize == 1);
if ((mpiSize > 1) || (numJacobiBlocks > 1)) {
if (this->grid_->size(0) > 0) {
// Generally needed in parallel runs both when there is and when
// there is not an externally defined load-balancing function.
// In addition to being used in CpGrid::loadBalance(), the
// transmissibilities are also output to the .INIT file. Thus,
// transmissiblity values must exist on the I/O rank for derived
// classes such as EclCpGridVanguard<>.
this->allocTrans();
}
// CpGrid's loadBalance() method uses transmissibilities as edge
// weights. This is arguably a layering violation and extracting
// the per-face transmissibilities as a linear array is relatively
// expensive. We therefore extract transmissibility values only if
// the values are actually needed.
auto loadBalancerSet = static_cast<int>(externalLoadBalancer.has_value());
this->grid_->comm().broadcast(&loadBalancerSet, 1, 0);
const auto faceTrans = ((loadBalancerSet == 0) || partitionJacobiBlocks)
? this->extractFaceTrans(gridView)
: std::vector<double>{};
const auto wells = ((mpiSize > 1) || partitionJacobiBlocks)
? schedule.getWellsatEnd()
: std::vector<Well>{};
// Distribute the grid and switch to the distributed view.
if (mpiSize > 1) {
this->distributeGrid(edgeWeightsMethod, ownersFirst,
serialPartitioning, enableDistributedWells,
zoltanImbalanceTol, loadBalancerSet != 0,
faceTrans, wells, centroids,
eclState1, parallelWells);
}
// Calling Schedule::filterConnections would remove any perforated
// cells that exist only on other ranks even in the case of
// distributed wells. But we need all connections to figure out the
// first cell of a well (e.g. for pressure). Hence this is now
// skipped. Rank 0 had everything even before.
#if HAVE_OPENCL
if (partitionJacobiBlocks) {
this->cell_part_ = this->grid_->
zoltanPartitionWithoutScatter(&wells, faceTrans.data(),
numJacobiBlocks,
zoltanImbalanceTol);
}
#endif // HAVE_OPENCL
}
}
template<class ElementMapper, class GridView, class Scalar>
void EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::distributeFieldProps_(EclipseState& eclState1)
{
const auto mpiSize = this->grid_->comm().size();
if (mpiSize == 1) {
return;
}
if (auto* parallelEclState = dynamic_cast<ParallelEclipseState*>(&eclState1);
parallelEclState != nullptr)
{
// Reset Cartesian index mapper for automatic creation of field
// properties
parallelEclState->resetCartesianMapper(this->cartesianIndexMapper_.get());
parallelEclState->switchToDistributedProps();
}
else {
const auto message = std::string {
"Parallel simulator setup is incorrect as "
"it does not use ParallelEclipseState"
};
OpmLog::error(message);
throw std::invalid_argument { message };
}
}
template <class ElementMapper, class GridView, class Scalar>
std::vector<double>
EclGenericCpGridVanguard<ElementMapper, GridView, Scalar>::
extractFaceTrans(const GridView& gridView) const
{
auto faceTrans = std::vector<double>(this->grid_->numFaces(), 0.0);
const auto elemMapper = ElementMapper { gridView, Dune::mcmgElementLayout() };
for (const auto& elem : elements(gridView, Dune::Partitions::interiorBorder)) {
for (const auto& is : intersections(gridView, elem)) {
if (!is.neighbor()) {
continue;
}
const auto I = static_cast<unsigned int>(elemMapper.index(is.inside()));
const auto J = static_cast<unsigned int>(elemMapper.index(is.outside()));
faceTrans[is.id()] = this->getTransmissibility(I, J);
}
}
return faceTrans;
}
template <class ElementMapper, class GridView, class Scalar>
void
EclGenericCpGridVanguard<ElementMapper, GridView, Scalar>::
distributeGrid(const Dune::EdgeWeightMethod edgeWeightsMethod,
const bool ownersFirst,
const bool serialPartitioning,
const bool enableDistributedWells,
const double zoltanImbalanceTol,
const bool loadBalancerSet,
const std::vector<double>& faceTrans,
const std::vector<Well>& wells,
std::vector<double>& centroids,
EclipseState& eclState1,
EclGenericVanguard::ParallelWellStruct& parallelWells)
{
if (auto* eclState = dynamic_cast<ParallelEclipseState*>(&eclState1);
eclState != nullptr)
{
this->distributeGrid(edgeWeightsMethod, ownersFirst,
serialPartitioning, enableDistributedWells,
zoltanImbalanceTol, loadBalancerSet, faceTrans,
wells, centroids, eclState, parallelWells);
}
else {
const auto message = std::string {
"Parallel simulator setup is incorrect as "
"it does not use ParallelEclipseState"
};
OpmLog::error(message);
throw std::invalid_argument { message };
}
this->grid_->switchToDistributedView();
}
template <class ElementMapper, class GridView, class Scalar>
void
EclGenericCpGridVanguard<ElementMapper, GridView, Scalar>::
distributeGrid(const Dune::EdgeWeightMethod edgeWeightsMethod,
const bool ownersFirst,
const bool serialPartitioning,
const bool enableDistributedWells,
const double zoltanImbalanceTol,
const bool loadBalancerSet,
const std::vector<double>& faceTrans,
const std::vector<Well>& wells,
std::vector<double>& centroids,
ParallelEclipseState* eclState,
EclGenericVanguard::ParallelWellStruct& parallelWells)
{
const auto isIORank = this->grid_->comm().rank() == 0;
const auto* eclGrid = isIORank
? &eclState->getInputGrid()
: nullptr;
PropsCentroidsDataHandle<Dune::CpGrid> handle {
*this->grid_, *eclState, eclGrid, centroids,
this->cartesianIndexMapper()
};
const auto addCornerCells = false;
const auto overlapLayers = 1;
if (loadBalancerSet) {
auto parts = isIORank
? (*externalLoadBalancer)(*this->grid_)
: std::vector<int>{};
parallelWells =
std::get<1>(this->grid_->loadBalance(handle, parts, &wells, ownersFirst,
addCornerCells, overlapLayers));
}
else {
const auto useZoltan = true;
parallelWells =
std::get<1>(this->grid_->loadBalance(handle, edgeWeightsMethod,
&wells, serialPartitioning,
faceTrans.data(), ownersFirst,
addCornerCells, overlapLayers,
useZoltan, zoltanImbalanceTol,
enableDistributedWells));
}
}
#endif // HAVE_MPI
template<class ElementMapper, class GridView, class Scalar>
void EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::doCreateGrids_(EclipseState& eclState)
{
const EclipseGrid* input_grid = nullptr;
std::vector<double> global_porv;
// At this stage the ParallelEclipseState instance is still in global
// view; on rank 0 we have undistributed data for the entire grid, on
// the other ranks the EclipseState is empty.
if (mpiRank == 0) {
input_grid = &eclState.getInputGrid();
global_porv = eclState.fieldProps().porv(true);
OpmLog::info("\nProcessing grid");
}
#if HAVE_MPI
this->grid_ = std::make_unique<Dune::CpGrid>(EclGenericVanguard::comm());
#else
this->grid_ = std::make_unique<Dune::CpGrid>();
#endif
// Note: removed_cells is guaranteed to be empty on ranks other than 0.
auto removed_cells =
this->grid_->processEclipseFormat(input_grid,
&eclState,
/*isPeriodic=*/false,
/*flipNormals=*/false,
/*clipZ=*/false);
if (mpiRank == 0) {
const auto& active_porv = eclState.fieldProps().porv(false);
const auto& unit_system = eclState.getUnits();
const auto& volume_unit = unit_system.name( UnitSystem::measure::volume);
double total_pore_volume = unit_system.from_si( UnitSystem::measure::volume, std::accumulate(active_porv.begin(), active_porv.end(), 0.0));
OpmLog::info(fmt::format("Total number of active cells: {} / total pore volume: {:0.0f} {}", grid_->numCells(), total_pore_volume , volume_unit));
double removed_pore_volume = 0;
for (const auto& global_index : removed_cells)
removed_pore_volume += active_porv[ eclState.getInputGrid().activeIndex(global_index) ];
if (removed_pore_volume > 0) {
removed_pore_volume = unit_system.from_si( UnitSystem::measure::volume, removed_pore_volume );
OpmLog::info(fmt::format("Removed {} cells with a pore volume of {:0.0f} {} ({:5.3f} %) due to MINPV/MINPVV",
removed_cells.size(),
removed_pore_volume,
volume_unit,
100 * removed_pore_volume / total_pore_volume));
}
}
cartesianIndexMapper_ = std::make_unique<CartesianIndexMapper>(*grid_);
#if HAVE_MPI
{
const bool has_numerical_aquifer = eclState.aquifer().hasNumericalAquifer();
int mpiSize = 1;
MPI_Comm_size(grid_->comm(), &mpiSize);
// when there is numerical aquifers, new NNC are generated during
// grid processing we need to pass the NNC from root process to
// other processes
if (has_numerical_aquifer && mpiSize > 1) {
auto nnc_input = eclState.getInputNNC();
EclMpiSerializer ser(grid_->comm());
ser.broadcast(nnc_input);
if (mpiRank > 0) {
eclState.setInputNNC(nnc_input);
}
}
}
#endif
// We use separate grid objects: one for the calculation of the initial
// condition via EQUIL and one for the actual simulation. The reason is
// that the EQUIL code is allergic to distributed grids and the
// simulation grid is distributed before the initial condition is
// calculated.
//
// After loadbalance, grid_ will contain a global and distribute view.
// equilGrid_ being a shallow copy only the global view.
if (mpiRank == 0)
{
equilGrid_.reset(new Dune::CpGrid(*grid_));
equilCartesianIndexMapper_ = std::make_unique<CartesianIndexMapper>(*equilGrid_);
eclState.reset_actnum(UgGridHelpers::createACTNUM(*grid_));
}
{
auto size = removed_cells.size();
this->grid_->comm().broadcast(&size, 1, 0);
if (mpiRank != 0) {
removed_cells.resize(size);
}
this->grid_->comm().broadcast(removed_cells.data(), size, 0);
}
// Inform the aquifer object that we might have removed/deactivated
// cells as part of minimum pore-volume threshold processing.
eclState.pruneDeactivatedAquiferConnections(removed_cells);
}
template<class ElementMapper, class GridView, class Scalar>
void EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::doFilterConnections_(Schedule& schedule)
{
// We only filter if we hold the global grid. Otherwise the filtering
// is done after load balancing as in the future the other processes
// will hold an empty partition for the global grid and hence filtering
// here would remove all well connections.
if (this->equilGrid_ != nullptr) {
ActiveGridCells activeCells(equilGrid().logicalCartesianSize(),
equilGrid().globalCell().data(),
equilGrid().size(0));
schedule.filterConnections(activeCells);
}
#if HAVE_MPI
try {
// Broadcast another time to remove inactive peforations on
// slave processors.
eclBroadcast(EclGenericVanguard::comm(), schedule);
}
catch (const std::exception& broadcast_error) {
OpmLog::error(fmt::format("Distributing properties to all processes failed\n"
"Internal error message: {}", broadcast_error.what()));
MPI_Finalize();
std::exit(EXIT_FAILURE);
}
#endif // HAVE_MPI
}
template<class ElementMapper, class GridView, class Scalar>
const Dune::CpGrid&
EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::equilGrid() const
{
assert(mpiRank == 0);
return *equilGrid_;
}
template<class ElementMapper, class GridView, class Scalar>
const Dune::CartesianIndexMapper<Dune::CpGrid>&
EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::cartesianIndexMapper() const
{
return *cartesianIndexMapper_;
}
template<class ElementMapper, class GridView, class Scalar>
const Dune::CartesianIndexMapper<Dune::CpGrid>&
EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::equilCartesianIndexMapper() const
{
assert(mpiRank == 0);
assert(equilCartesianIndexMapper_);
return *equilCartesianIndexMapper_;
}
template<class ElementMapper, class GridView, class Scalar>
Scalar
EclGenericCpGridVanguard<ElementMapper,GridView,Scalar>::
computeCellThickness(const typename GridView::template Codim<0>::Entity& element) const
{
typedef typename Element::Geometry Geometry;
static constexpr int zCoord = Element::dimension - 1;
Scalar zz1 = 0.0;
Scalar zz2 = 0.0;
const Geometry& geometry = element.geometry();
// This code only works with CP-grid where the
// number of corners are 8 and
// also assumes that the first
// 4 corners are the top surface and
// the 4 next are the bottomn.
assert(geometry.corners() == 8);
for (int i=0; i < 4; ++i){
zz1 += geometry.corner(i)[zCoord];
zz2 += geometry.corner(i+4)[zCoord];
}
zz1 /=4;
zz2 /=4;
return zz2-zz1;
}
#if HAVE_DUNE_FEM
template class EclGenericCpGridVanguard<
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::GridView<
Dune::Fem::GridPart2GridViewTraits<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false>>>>,
Dune::GridView<
Dune::Fem::GridPart2GridViewTraits<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false>>>,
double>;
template class EclGenericCpGridVanguard<
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false>>>,
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false> >,
double>;
#else
template class EclGenericCpGridVanguard<
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::GridView<
Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>,
Dune::GridView<
Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,
double>;
#endif
} // namespace Opm