opm-simulators/opm/polymer/IncompTpfaPolymer.cpp
2018-02-10 08:33:33 +01:00

173 lines
6.9 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <opm/polymer/IncompTpfaPolymer.hpp>
#include <opm/core/props/IncompPropertiesInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/pressure/tpfa/ifs_tpfa.h>
#include <opm/grid/transmissibility/trans_tpfa.h>
#include <opm/core/pressure/mimetic/mimetic.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/sparse_sys.h>
#include <opm/polymer/PolymerState.hpp>
#include <opm/polymer/polymerUtilities.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/wells.h>
#include <iomanip>
#include <cmath>
#include <algorithm>
namespace Opm
{
/// Construct solver, possibly with rock compressibility.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] rock_comp_props Rock compressibility properties. May be null.
/// \param[in] linsolver Linear solver to use.
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
/// \param[in] maxiter Maximum acceptable number of iterations.
/// \param[in] gravity Gravity vector. If non-null, the array should
/// have D elements.
/// \param[in] wells The wells argument. Will be used in solution,
/// is ignored if NULL.
/// Note: this class observes the well object, and
/// makes the assumption that the well topology
/// and completions does not change during the
/// run. However, controls (only) are allowed
/// to change.
/// \param[in] src Source terms. May be empty().
/// \param[in] bcs Boundary conditions, treat as all noflow if null.
IncompTpfaPolymer::IncompTpfaPolymer(const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
const PolymerProperties& poly_props,
LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
const int maxiter,
const double* gravity,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs)
: IncompTpfa(grid, props, rock_comp_props, linsolver,
residual_tol, change_tol, maxiter,
gravity, wells, src, bcs),
poly_props_(poly_props),
c_(0),
cmax_(0)
{
}
/// Solve the pressure equation. If there is no pressure
/// dependency introduced by rock compressibility effects,
/// the equation is linear, and it is solved directly.
/// Otherwise, the nonlinear equations ares solved by a
/// Newton-Raphson scheme.
/// May throw an exception if the number of iterations
/// exceed maxiter (set in constructor).
void IncompTpfaPolymer::solve(const double dt,
PolymerState& state,
WellState& well_state)
{
c_ = &state.getCellData( state.CONCENTRATION );
cmax_ = &state.getCellData( state.CMAX) ;
if (rock_comp_props_ != 0 && rock_comp_props_->isActive()) {
solveRockComp(dt, state, well_state);
} else {
solveIncomp(dt, state, well_state);
}
}
/// Compute per-solve dynamic properties.
void IncompTpfaPolymer::computePerSolveDynamicData(const double /*dt*/,
const SimulationDataContainer& state,
const WellState& /*well_state*/)
{
// Computed here:
//
// std::vector<double> wdp_;
// std::vector<double> totmob_;
// std::vector<double> omega_;
// std::vector<double> trans_;
// std::vector<double> gpress_omegaweighted_;
// std::vector<double> initial_porevol_;
// ifs_tpfa_forces forces_;
// The only difference from IncompTpfa::computePerSolveDynamicData() is that
// we call the polymer-aware versions of the computeTotalMobility*() functions.
// wdp_
if (wells_) {
Opm::computeWDP(*wells_, grid_, state.saturation(), props_.density(),
gravity_ ? gravity_[2] : 0.0, true, wdp_);
}
// totmob_, omega_, gpress_omegaweighted_
if (gravity_) {
computeTotalMobilityOmega(props_, poly_props_, allcells_, state.saturation(), *c_, *cmax_,
totmob_, omega_);
mim_ip_density_update(grid_.number_of_cells, grid_.cell_facepos,
&omega_[0],
&gpress_[0], &gpress_omegaweighted_[0]);
} else {
computeTotalMobility(props_, poly_props_, allcells_, state.saturation(), *c_, *cmax_, totmob_);
}
// trans_
tpfa_eff_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &totmob_[0], &htrans_[0], &trans_[0]);
// initial_porevol_
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
}
// forces_
forces_.src = src_.empty() ? NULL : &src_[0];
forces_.bc = bcs_;
forces_.W = wells_;
forces_.totmob = &totmob_[0];
forces_.wdp = wdp_.empty() ? NULL : &wdp_[0];
}
} // namespace Opm