opm-simulators/opm/simulators/linalg/bda/cuda/cusparseSolverBackend.cu
2024-04-12 20:17:38 +02:00

569 lines
21 KiB
Plaintext

/*
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <cuda_runtime.h>
#include <sstream>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <dune/common/timer.hh>
#include <opm/simulators/linalg/bda/cuda/cusparseSolverBackend.hpp>
#include <opm/simulators/linalg/bda/cuda/cuWellContributions.hpp>
#include <opm/simulators/linalg/bda/BdaResult.hpp>
#include <opm/simulators/linalg/bda/cuda/cuda_header.hpp>
#include "cublas_v2.h"
#include "cusparse_v2.h"
// For more information about cusparse, check https://docs.nvidia.com/cuda/cusparse/index.html
// iff true, the nonzeroes of the matrix are copied row-by-row into a contiguous, pinned memory array, then a single GPU memcpy is done
// otherwise, the nonzeroes of the matrix are assumed to be in a contiguous array, and a single GPU memcpy is enough
#define COPY_ROW_BY_ROW 0
#if HAVE_OPENMP
#include <thread>
#include <omp.h>
extern std::shared_ptr<std::thread> copyThread;
#endif // HAVE_OPENMP
namespace Opm
{
namespace Accelerator
{
using Opm::OpmLog;
using Dune::Timer;
const cusparseSolvePolicy_t policy = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t operation = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseDirection_t order = CUSPARSE_DIRECTION_ROW;
template <unsigned int block_size>
cusparseSolverBackend<block_size>::cusparseSolverBackend(int verbosity_, int maxit_, double tolerance_, unsigned int deviceID_) : BdaSolver<block_size>(verbosity_, maxit_, tolerance_, deviceID_) {
// initialize CUDA device, stream and libraries
cudaSetDevice(deviceID);
cudaCheckLastError("Could not get device");
struct cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceID);
cudaCheckLastError("Could not get device properties");
std::ostringstream out;
out << "Name GPU: " << props.name << ", Compute Capability: " << props.major << "." << props.minor;
OpmLog::info(out.str());
cudaStreamCreate(&stream);
cudaCheckLastError("Could not create stream");
cublasCreate(&cublasHandle);
cudaCheckLastError("Could not create cublasHandle");
cusparseCreate(&cusparseHandle);
cudaCheckLastError("Could not create cusparseHandle");
cublasSetStream(cublasHandle, stream);
cudaCheckLastError("Could not set stream to cublas");
cusparseSetStream(cusparseHandle, stream);
cudaCheckLastError("Could not set stream to cusparse");
}
template <unsigned int block_size>
cusparseSolverBackend<block_size>::~cusparseSolverBackend() {
finalize();
}
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::gpu_pbicgstab(WellContributions& wellContribs, BdaResult& res) {
Timer t_total, t_prec(false), t_spmv(false), t_well(false), t_rest(false);
int n = N;
double rho = 1.0, rhop;
double alpha, nalpha, beta;
double omega, nomega, tmp1, tmp2;
double norm, norm_0;
double zero = 0.0;
double one = 1.0;
double mone = -1.0;
float it;
if (wellContribs.getNumWells() > 0) {
static_cast<WellContributionsCuda&>(wellContribs).setCudaStream(stream);
}
cusparseDbsrmv(cusparseHandle, order, operation, Nb, Nb, nnzb, &one, descr_M, d_bVals, d_bRows, d_bCols, block_size, d_x, &zero, d_r);
cublasDscal(cublasHandle, n, &mone, d_r, 1);
cublasDaxpy(cublasHandle, n, &one, d_b, 1, d_r, 1);
cublasDcopy(cublasHandle, n, d_r, 1, d_rw, 1);
cublasDcopy(cublasHandle, n, d_r, 1, d_p, 1);
cublasDnrm2(cublasHandle, n, d_r, 1, &norm_0);
if (verbosity > 1) {
std::ostringstream out;
out << std::scientific << "cusparseSolver initial norm: " << norm_0;
OpmLog::info(out.str());
}
for (it = 0.5; it < maxit; it += 0.5) {
rhop = rho;
cublasDdot(cublasHandle, n, d_rw, 1, d_r, 1, &rho);
if (it > 1) {
beta = (rho / rhop) * (alpha / omega);
nomega = -omega;
cublasDaxpy(cublasHandle, n, &nomega, d_v, 1, d_p, 1);
cublasDscal(cublasHandle, n, &beta, d_p, 1);
cublasDaxpy(cublasHandle, n, &one, d_r, 1, d_p, 1);
}
// apply ilu0
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzbs_prec, &one, \
descr_L, d_mVals, d_mRows, d_mCols, block_size, info_L, d_p, d_t, policy, d_buffer);
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzbs_prec, &one, \
descr_U, d_mVals, d_mRows, d_mCols, block_size, info_U, d_t, d_pw, policy, d_buffer);
// spmv
cusparseDbsrmv(cusparseHandle, order, \
operation, Nb, Nb, nnzb, \
&one, descr_M, d_bVals, d_bRows, d_bCols, block_size, d_pw, &zero, d_v);
// apply wellContributions
if (wellContribs.getNumWells() > 0) {
static_cast<WellContributionsCuda&>(wellContribs).apply(d_pw, d_v);
}
cublasDdot(cublasHandle, n, d_rw, 1, d_v, 1, &tmp1);
alpha = rho / tmp1;
nalpha = -alpha;
cublasDaxpy(cublasHandle, n, &nalpha, d_v, 1, d_r, 1);
cublasDaxpy(cublasHandle, n, &alpha, d_pw, 1, d_x, 1);
cublasDnrm2(cublasHandle, n, d_r, 1, &norm);
if (norm < tolerance * norm_0) {
break;
}
it += 0.5;
// apply ilu0
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzbs_prec, &one, \
descr_L, d_mVals, d_mRows, d_mCols, block_size, info_L, d_r, d_t, policy, d_buffer);
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzbs_prec, &one, \
descr_U, d_mVals, d_mRows, d_mCols, block_size, info_U, d_t, d_s, policy, d_buffer);
// spmv
cusparseDbsrmv(cusparseHandle, order, \
operation, Nb, Nb, nnzb, &one, descr_M, \
d_bVals, d_bRows, d_bCols, block_size, d_s, &zero, d_t);
// apply wellContributions
if (wellContribs.getNumWells() > 0) {
static_cast<WellContributionsCuda&>(wellContribs).apply(d_s, d_t);
}
cublasDdot(cublasHandle, n, d_t, 1, d_r, 1, &tmp1);
cublasDdot(cublasHandle, n, d_t, 1, d_t, 1, &tmp2);
omega = tmp1 / tmp2;
nomega = -omega;
cublasDaxpy(cublasHandle, n, &omega, d_s, 1, d_x, 1);
cublasDaxpy(cublasHandle, n, &nomega, d_t, 1, d_r, 1);
cublasDnrm2(cublasHandle, n, d_r, 1, &norm);
if (norm < tolerance * norm_0) {
break;
}
if (verbosity > 1) {
std::ostringstream out;
out << "it: " << it << std::scientific << ", norm: " << norm;
OpmLog::info(out.str());
}
}
res.iterations = std::min(it, (float)maxit);
res.reduction = norm / norm_0;
res.conv_rate = static_cast<double>(pow(res.reduction, 1.0 / it));
res.elapsed = t_total.stop();
res.converged = (it != (maxit + 0.5));
if (verbosity > 0) {
std::ostringstream out;
out << "=== converged: " << res.converged << ", conv_rate: " << res.conv_rate << ", time: " << res.elapsed << \
", time per iteration: " << res.elapsed / it << ", iterations: " << it;
OpmLog::info(out.str());
}
}
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::initialize(std::shared_ptr<BlockedMatrix> matrix, std::shared_ptr<BlockedMatrix> jacMatrix) {
this->Nb = matrix->Nb;
this->N = Nb * block_size;
this->nnzb = matrix->nnzbs;
this->nnz = nnzb * block_size * block_size;
if (jacMatrix) {
useJacMatrix = true;
nnzbs_prec = jacMatrix->nnzbs;
} else {
nnzbs_prec = nnzb;
}
std::ostringstream out;
out << "Initializing GPU, matrix size: " << Nb << " blockrows, nnz: " << nnzb << " blocks\n";
if (useJacMatrix) {
out << "Blocks in ILU matrix: " << nnzbs_prec << "\n";
}
out << "Maxit: " << maxit << std::scientific << ", tolerance: " << tolerance << "\n";
OpmLog::info(out.str());
cudaMalloc((void**)&d_x, sizeof(double) * N);
cudaMalloc((void**)&d_b, sizeof(double) * N);
cudaMalloc((void**)&d_r, sizeof(double) * N);
cudaMalloc((void**)&d_rw, sizeof(double) * N);
cudaMalloc((void**)&d_p, sizeof(double) * N);
cudaMalloc((void**)&d_pw, sizeof(double) * N);
cudaMalloc((void**)&d_s, sizeof(double) * N);
cudaMalloc((void**)&d_t, sizeof(double) * N);
cudaMalloc((void**)&d_v, sizeof(double) * N);
cudaMalloc((void**)&d_bVals, sizeof(double) * nnz);
cudaMalloc((void**)&d_bCols, sizeof(int) * nnzb);
cudaMalloc((void**)&d_bRows, sizeof(int) * (Nb + 1));
if (useJacMatrix) {
cudaMalloc((void**)&d_mVals, sizeof(double) * nnzbs_prec * block_size * block_size);
cudaMalloc((void**)&d_mCols, sizeof(int) * nnzbs_prec);
cudaMalloc((void**)&d_mRows, sizeof(int) * (Nb + 1));
} else {
cudaMalloc((void**)&d_mVals, sizeof(double) * nnz);
d_mCols = d_bCols;
d_mRows = d_bRows;
}
cudaCheckLastError("Could not allocate enough memory on GPU");
#if COPY_ROW_BY_ROW
cudaMallocHost((void**)&vals_contiguous, sizeof(double) * nnz);
cudaCheckLastError("Could not allocate pinned memory");
#endif
initialized = true;
} // end initialize()
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::finalize() {
if (initialized) {
cudaFree(d_x);
cudaFree(d_b);
cudaFree(d_r);
cudaFree(d_rw);
cudaFree(d_p);
cudaFree(d_pw);
cudaFree(d_s);
cudaFree(d_t);
cudaFree(d_v);
cudaFree(d_mVals);
if (useJacMatrix) {
cudaFree(d_mCols);
cudaFree(d_mRows);
}
cudaFree(d_bVals);
cudaFree(d_bCols);
cudaFree(d_bRows);
cudaFree(d_buffer);
cusparseDestroyBsrilu02Info(info_M);
cusparseDestroyBsrsv2Info(info_L);
cusparseDestroyBsrsv2Info(info_U);
cusparseDestroyMatDescr(descr_B);
cusparseDestroyMatDescr(descr_M);
cusparseDestroyMatDescr(descr_L);
cusparseDestroyMatDescr(descr_U);
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
#if COPY_ROW_BY_ROW
cudaFreeHost(vals_contiguous);
#endif
cudaStreamDestroy(stream);
}
} // end finalize()
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::copy_system_to_gpu(std::shared_ptr<BlockedMatrix> matrix, double *b, std::shared_ptr<BlockedMatrix> jacMatrix) {
Timer t;
cudaMemcpyAsync(d_bCols, matrix->colIndices, nnzb * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_bRows, matrix->rowPointers, (Nb + 1) * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b, N * sizeof(double), cudaMemcpyHostToDevice, stream);
cudaMemsetAsync(d_x, 0, sizeof(double) * N, stream);
#if COPY_ROW_BY_ROW
int sum = 0;
for (int i = 0; i < Nb; ++i) {
int size_row = matrix->rowPointers[i + 1] - matrix->rowPointers[i];
memcpy(vals_contiguous + sum, matrix->nnzValues + sum, size_row * sizeof(double) * block_size * block_size);
sum += size_row * block_size * block_size;
}
cudaMemcpyAsync(d_bVals, vals_contiguous, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
#else
cudaMemcpyAsync(d_bVals, matrix->nnzValues, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
if (useJacMatrix) {
#if HAVE_OPENMP
if(omp_get_max_threads() > 1)
copyThread->join();
#endif
cudaMemcpyAsync(d_mVals, jacMatrix->nnzValues, nnzbs_prec * block_size * block_size * sizeof(double), cudaMemcpyHostToDevice, stream);
} else {
cudaMemcpyAsync(d_mVals, d_bVals, nnz * sizeof(double), cudaMemcpyDeviceToDevice, stream);
}
#endif
if (useJacMatrix) {
cudaMemcpyAsync(d_mCols, jacMatrix->colIndices, nnzbs_prec * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_mRows, jacMatrix->rowPointers, (Nb + 1) * sizeof(int), cudaMemcpyHostToDevice, stream);
}
if (verbosity >= 3) {
cudaStreamSynchronize(stream);
c_copy += t.stop();
std::ostringstream out;
out << "---cusparseSolver::copy_system_to_gpu(): " << t.elapsed() << " s";
OpmLog::info(out.str());
}
} // end copy_system_to_gpu()
// don't copy rowpointers and colindices, they stay the same
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::update_system_on_gpu(std::shared_ptr<BlockedMatrix> matrix, double *b, std::shared_ptr<BlockedMatrix> jacMatrix) {
Timer t;
cudaMemcpyAsync(d_b, b, N * sizeof(double), cudaMemcpyHostToDevice, stream);
cudaMemsetAsync(d_x, 0, sizeof(double) * N, stream);
#if COPY_ROW_BY_ROW
int sum = 0;
for (int i = 0; i < Nb; ++i) {
int size_row = matrix->rowPointers[i + 1] - matrix->rowPointers[i];
memcpy(vals_contiguous + sum, matrix->nnzValues + sum, size_row * sizeof(double) * block_size * block_size);
sum += size_row * block_size * block_size;
}
cudaMemcpyAsync(d_bVals, vals_contiguous, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
#else
cudaMemcpyAsync(d_bVals, matrix->nnzValues, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
if (useJacMatrix) {
#if HAVE_OPENMP
if(omp_get_max_threads() > 1)
copyThread->join();
#endif
cudaMemcpyAsync(d_mVals, jacMatrix->nnzValues, nnzbs_prec * block_size * block_size * sizeof(double), cudaMemcpyHostToDevice, stream);
} else {
cudaMemcpyAsync(d_mVals, d_bVals, nnz * sizeof(double), cudaMemcpyDeviceToDevice, stream);
}
#endif
if (verbosity >= 3) {
cudaStreamSynchronize(stream);
c_copy += t.stop();
std::ostringstream out;
out << "-----cusparseSolver::update_system_on_gpu(): " << t.elapsed() << " s\n";
out << "---cusparseSolver::cum copy: " << c_copy << " s";
OpmLog::info(out.str());
}
} // end update_system_on_gpu()
template <unsigned int block_size>
bool cusparseSolverBackend<block_size>::analyse_matrix() {
int d_bufferSize_M, d_bufferSize_L, d_bufferSize_U, d_bufferSize;
Timer t;
cusparseCreateMatDescr(&descr_B);
cusparseCreateMatDescr(&descr_M);
cusparseSetMatType(descr_B, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);
const cusparseIndexBase_t base_type = CUSPARSE_INDEX_BASE_ZERO; // matrices from Flow are base0
cusparseSetMatIndexBase(descr_B, base_type);
cusparseSetMatIndexBase(descr_M, base_type);
cusparseCreateMatDescr(&descr_L);
cusparseSetMatIndexBase(descr_L, base_type);
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_UNIT);
cusparseCreateMatDescr(&descr_U);
cusparseSetMatIndexBase(descr_U, base_type);
cusparseSetMatType(descr_U, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_U, CUSPARSE_FILL_MODE_UPPER);
cusparseSetMatDiagType(descr_U, CUSPARSE_DIAG_TYPE_NON_UNIT);
cudaCheckLastError("Could not initialize matrix descriptions");
cusparseCreateBsrilu02Info(&info_M);
cusparseCreateBsrsv2Info(&info_L);
cusparseCreateBsrsv2Info(&info_U);
cudaCheckLastError("Could not create analysis info");
cusparseDbsrilu02_bufferSize(cusparseHandle, order, Nb, nnzbs_prec,
descr_M, d_mVals, d_mRows, d_mCols, block_size, info_M, &d_bufferSize_M);
cusparseDbsrsv2_bufferSize(cusparseHandle, order, operation, Nb, nnzbs_prec,
descr_L, d_mVals, d_mRows, d_mCols, block_size, info_L, &d_bufferSize_L);
cusparseDbsrsv2_bufferSize(cusparseHandle, order, operation, Nb, nnzbs_prec,
descr_U, d_mVals, d_mRows, d_mCols, block_size, info_U, &d_bufferSize_U);
cudaCheckLastError();
d_bufferSize = std::max(d_bufferSize_M, std::max(d_bufferSize_L, d_bufferSize_U));
cudaMalloc((void**)&d_buffer, d_bufferSize);
// analysis of ilu LU decomposition
cusparseDbsrilu02_analysis(cusparseHandle, order, \
Nb, nnzbs_prec, descr_B, d_mVals, d_mRows, d_mCols, \
block_size, info_M, policy, d_buffer);
int structural_zero;
cusparseStatus_t status = cusparseXbsrilu02_zeroPivot(cusparseHandle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status) {
return false;
}
// analysis of ilu apply
cusparseDbsrsv2_analysis(cusparseHandle, order, operation, \
Nb, nnzbs_prec, descr_L, d_mVals, d_mRows, d_mCols, \
block_size, info_L, policy, d_buffer);
cusparseDbsrsv2_analysis(cusparseHandle, order, operation, \
Nb, nnzbs_prec, descr_U, d_mVals, d_mRows, d_mCols, \
block_size, info_U, policy, d_buffer);
cudaCheckLastError("Could not analyse level information");
if (verbosity > 2) {
cudaStreamSynchronize(stream);
std::ostringstream out;
out << "cusparseSolver::analyse_matrix(): " << t.stop() << " s";
OpmLog::info(out.str());
}
analysis_done = true;
return true;
} // end analyse_matrix()
template <unsigned int block_size>
bool cusparseSolverBackend<block_size>::create_preconditioner() {
Timer t;
cusparseDbsrilu02(cusparseHandle, order, \
Nb, nnzbs_prec, descr_M, d_mVals, d_mRows, d_mCols, \
block_size, info_M, policy, d_buffer);
cudaCheckLastError("Could not perform ilu decomposition");
int structural_zero;
// cusparseXbsrilu02_zeroPivot() calls cudaDeviceSynchronize()
cusparseStatus_t status = cusparseXbsrilu02_zeroPivot(cusparseHandle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status) {
return false;
}
if (verbosity > 2) {
cudaStreamSynchronize(stream);
std::ostringstream out;
out << "cusparseSolver::create_preconditioner(): " << t.stop() << " s";
OpmLog::info(out.str());
}
return true;
} // end create_preconditioner()
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::solve_system(WellContributions& wellContribs, BdaResult &res) {
// actually solve
gpu_pbicgstab(wellContribs, res);
cudaStreamSynchronize(stream);
cudaCheckLastError("Something went wrong during the GPU solve");
} // end solve_system()
// copy result to host memory
// caller must be sure that x is a valid array
template <unsigned int block_size>
void cusparseSolverBackend<block_size>::get_result(double *x) {
Timer t;
cudaMemcpyAsync(x, d_x, N * sizeof(double), cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
if (verbosity > 2) {
std::ostringstream out;
out << "cusparseSolver::get_result(): " << t.stop() << " s";
OpmLog::info(out.str());
}
} // end get_result()
template <unsigned int block_size>
SolverStatus cusparseSolverBackend<block_size>::solve_system(std::shared_ptr<BlockedMatrix> matrix,
double *b,
std::shared_ptr<BlockedMatrix> jacMatrix,
WellContributions& wellContribs,
BdaResult &res)
{
if (initialized == false) {
initialize(matrix, jacMatrix);
copy_system_to_gpu(matrix, b, jacMatrix);
} else {
update_system_on_gpu(matrix, b, jacMatrix);
}
if (analysis_done == false) {
if (!analyse_matrix()) {
return SolverStatus::BDA_SOLVER_ANALYSIS_FAILED;
}
}
if (create_preconditioner()) {
solve_system(wellContribs, res);
} else {
return SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED;
}
return SolverStatus::BDA_SOLVER_SUCCESS;
}
#define INSTANTIATE_BDA_FUNCTIONS(n) \
template cusparseSolverBackend<n>::cusparseSolverBackend(int, int, double, unsigned int); \
INSTANTIATE_BDA_FUNCTIONS(1);
INSTANTIATE_BDA_FUNCTIONS(2);
INSTANTIATE_BDA_FUNCTIONS(3);
INSTANTIATE_BDA_FUNCTIONS(4);
INSTANTIATE_BDA_FUNCTIONS(5);
INSTANTIATE_BDA_FUNCTIONS(6);
#undef INSTANTIATE_BDA_FUNCTIONS
} // namespace Accelerator
} // namespace Opm