mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-05 05:54:58 -06:00
2166ec6328
this creates a pdf for each failed case with plots of summary curves
121 lines
3.9 KiB
Python
Executable File
121 lines
3.9 KiB
Python
Executable File
#!/usr/bin/python3
|
|
|
|
# Generates a PDF with plots of all summary curves from a reference
|
|
# case and a 'new' simulation.
|
|
|
|
import argparse
|
|
from datetime import datetime, timedelta
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.dates import DateFormatter
|
|
from matplotlib.backends.backend_pdf import PdfPages
|
|
import numpy as np
|
|
from opm.io.ecl import ESmry
|
|
import os
|
|
import pickle
|
|
from scipy import integrate, stats
|
|
|
|
# Run analysis of a test.
|
|
# Calculate the deviation for each curve
|
|
# and generate a pdf with plots ordered according to deviation
|
|
def run_analysis(ref_file_name, sys_file_name, test_name):
|
|
ref_file = ESmry(ref_file_name + '.SMSPEC')
|
|
sim_file = ESmry(sys_file_name + '.SMSPEC')
|
|
|
|
ref_time = ref_file.dates()
|
|
sim_time = sim_file.dates()
|
|
|
|
ref_time_in_secs = [(v - ref_time[0]).total_seconds() for v in ref_time]
|
|
sim_time_in_secs = [(v - sim_time[0]).total_seconds() for v in sim_time]
|
|
|
|
plt.rcParams['font.size'] = 8
|
|
|
|
# Attempt at sorting the graphs in descending eyeball norm order.
|
|
# - Normalize by inf-norm to get the same range in each graph, ie (0,1).
|
|
# - Convert graphs to probability distributions (ie integral under curve should be 1).
|
|
# - Use the wasserstein distance scaled by area under reference curve.
|
|
deviation={}
|
|
for r in ref_file.keys():
|
|
if r == 'TIME' or r == 'YEARS':
|
|
continue
|
|
try:
|
|
ref = ref_file[r]
|
|
sim = sim_file[r]
|
|
except:
|
|
continue
|
|
|
|
if len(ref) == 0 and len(sim) == 0:
|
|
continue
|
|
|
|
if not (any(ref) or any(sim)):
|
|
continue
|
|
|
|
ref /= np.linalg.norm(ref, np.inf)
|
|
sim /= np.linalg.norm(sim, np.inf)
|
|
|
|
A_ref = integrate.trapezoid(ref, ref_time_in_secs, 0.0)
|
|
A_sim = integrate.trapezoid(sim, sim_time_in_secs, 0.0)
|
|
|
|
deviation[r] = stats.wasserstein_distance(ref / A_ref, sim / A_sim) * A_ref
|
|
|
|
p = PdfPages(f'{test_name}.pdf')
|
|
for r in sorted(deviation, key = lambda x: deviation[x], reverse=True):
|
|
try:
|
|
ref = ref_file[r]
|
|
sim = sim_file[r]
|
|
except:
|
|
continue
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.plot(ref_time, ref, linestyle='dashed', linewidth=0.5, marker='o', markersize=1.0)
|
|
ax.plot(sim_time, sim, linewidth=0.5, marker='x', markersize=1.0)
|
|
ax.legend(['Reference', 'New simulation'])
|
|
plt.title(r)
|
|
u = ref_file.units(r)
|
|
if u:
|
|
plt.ylabel(u)
|
|
myFmt = DateFormatter("%Y-%b")
|
|
ax.xaxis.set_major_formatter(myFmt)
|
|
ax.xaxis.set_major_locator(plt.MaxNLocator(20))
|
|
plt.grid()
|
|
fig.autofmt_xdate()
|
|
fig.savefig(p, format='pdf')
|
|
plt.close(fig)
|
|
|
|
p.close()
|
|
|
|
if os.path.exists('max_devs.pkl'):
|
|
with open('max_devs.pkl', 'rb') as f:
|
|
max_deviations = pickle.load(f)
|
|
else:
|
|
max_deviations = {}
|
|
|
|
max_dev = max(deviation, key = lambda x: deviation[x])
|
|
max_deviations[test_name] = deviation[max_dev]
|
|
|
|
with open('max_devs.pkl', 'wb') as f:
|
|
pickle.dump(max_deviations, f)
|
|
|
|
# Rename files to rank them according to maximum deviations
|
|
def reorder_files():
|
|
with open('max_devs.pkl', 'rb') as f:
|
|
max_deviations = pickle.load(f)
|
|
|
|
c = 1
|
|
for file in sorted(max_deviations, key = lambda x: max_deviations[x], reverse=True):
|
|
os.rename(f'{file}.pdf', f'{c:02d}_{file}.pdf')
|
|
c += 1
|
|
|
|
# Main code
|
|
parser = argparse.ArgumentParser('plot_well_comparison.py')
|
|
|
|
parser.add_argument('-c', help='Name of test to process', dest='test_name')
|
|
parser.add_argument('-r', help='Reference file', dest='ref_file')
|
|
parser.add_argument('-s', help='Simulation file', dest='sim_file')
|
|
parser.add_argument('-o', choices=['plot', 'rename'], help='Operation to do', required=True, dest='operation')
|
|
args = parser.parse_args()
|
|
|
|
if args.operation == 'plot':
|
|
run_analysis(args.ref_file, args.sim_file, args.test_name)
|
|
else:
|
|
reorder_files()
|