mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 21:32:56 -06:00
394 lines
12 KiB
C++
394 lines
12 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::OutflowProblem
|
|
*/
|
|
#ifndef EWOMS_OUTFLOW_PROBLEM_HH
|
|
#define EWOMS_OUTFLOW_PROBLEM_HH
|
|
|
|
#include <opm/models/pvs/pvsproperties.hh>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidsystems/H2ON2LiquidPhaseFluidSystem.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class OutflowProblem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
|
|
struct OutflowBaseProblem {};
|
|
|
|
} // namespace TTag
|
|
|
|
// Set the grid type
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::OutflowBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::OutflowBaseProblem> { using type = Opm::OutflowProblem<TypeTag>; };
|
|
|
|
// Set fluid system
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::OutflowBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
// Two-component single phase fluid system
|
|
using type = Opm::H2ON2LiquidPhaseFluidSystem<Scalar>;
|
|
};
|
|
|
|
// Disable gravity
|
|
template<class TypeTag>
|
|
struct EnableGravity<TypeTag, TTag::OutflowBaseProblem> { static constexpr bool value = false; };
|
|
|
|
// Also write mass fractions to the output
|
|
template<class TypeTag>
|
|
struct VtkWriteMassFractions<TypeTag, TTag::OutflowBaseProblem> { static constexpr bool value = true; };
|
|
|
|
// The default for the end time of the simulation
|
|
template<class TypeTag>
|
|
struct EndTime<TypeTag, TTag::OutflowBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 100;
|
|
};
|
|
|
|
// The default for the initial time step size of the simulation
|
|
template<class TypeTag>
|
|
struct InitialTimeStepSize<TypeTag, TTag::OutflowBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1;
|
|
};
|
|
|
|
// The default DGF file to load
|
|
template<class TypeTag>
|
|
struct GridFile<TypeTag, TTag::OutflowBaseProblem> { static constexpr auto value = "./data/outflow.dgf"; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Problem where dissolved nitrogen is transported with the water
|
|
* phase from the left side to the right.
|
|
*
|
|
* The model domain is 1m times 1m and exhibits homogeneous soil
|
|
* properties (\f$ \mathrm{K=10e-10, \Phi=0.4}\f$). Initially the
|
|
* domain is fully saturated by water without any nitrogen dissolved.
|
|
*
|
|
* At the left side, a free-flow condition defines a nitrogen mole
|
|
* fraction of 0.02%. The water phase flows from the left side to the
|
|
* right due to the imposed pressure gradient of \f$1e5\,Pa/m\f$. The
|
|
* nitrogen is transported with the water flow and leaves the domain
|
|
* at the right boundary where an outflow boundary condition is
|
|
* used.
|
|
*/
|
|
template <class TypeTag>
|
|
class OutflowProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
|
|
// copy some indices for convenience
|
|
enum {
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld,
|
|
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// component indices
|
|
H2OIdx = FluidSystem::H2OIdx,
|
|
N2Idx = FluidSystem::N2Idx
|
|
};
|
|
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
OutflowProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
, eps_(1e-6)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
temperature_ = 273.15 + 20;
|
|
FluidSystem::init(/*minT=*/temperature_ - 1, /*maxT=*/temperature_ + 2,
|
|
/*numT=*/3,
|
|
/*minp=*/0.8e5, /*maxp=*/2.5e5, /*nump=*/500);
|
|
|
|
// set parameters of porous medium
|
|
perm_ = this->toDimMatrix_(1e-10);
|
|
porosity_ = 0.4;
|
|
tortuosity_ = 0.28;
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return "outflow"; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*
|
|
* This problem assumes a temperature.
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return temperature_; } // in [K]
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*
|
|
* This problem uses a constant intrinsic permeability.
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix& intrinsicPermeability(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return perm_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*
|
|
* This problem uses a constant porosity.
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return porosity_; }
|
|
|
|
#if 0
|
|
/*!
|
|
* \brief Define the tortuosity \f$[?]\f$.
|
|
*
|
|
*/
|
|
template <class Context>
|
|
Scalar tortuosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return tortuosity_; }
|
|
|
|
/*!
|
|
* \brief Define the dispersivity \f$[?]\f$.
|
|
*
|
|
*/
|
|
template <class Context>
|
|
Scalar dispersivity(const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return 0; }
|
|
#endif
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(globalPos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem,
|
|
/*storeEnthalpy=*/false> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
fs.setPressure(/*phaseIdx=*/0, fs.pressure(/*phaseIdx=*/0) + 1e5);
|
|
|
|
Scalar xlN2 = 2e-4;
|
|
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, xlN2);
|
|
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1 - xlN2);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
|
|
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
|
|
}
|
|
|
|
// impose an freeflow boundary condition
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onRightBoundary_(globalPos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem,
|
|
/*storeEnthalpy=*/false> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
// impose an outflow boundary condition
|
|
values.setOutFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else
|
|
// no flow on top and bottom
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem, /*storeEnthalpy=*/false> fs;
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
values.assignNaive(fs);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
template <class FluidState, class Context>
|
|
void initialFluidState_(FluidState& fs, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
Scalar T = temperature(context, spaceIdx, timeIdx);
|
|
// Scalar rho = FluidSystem::H2O::liquidDensity(T, /*pressure=*/1.5e5);
|
|
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
|
|
// this->boundingBoxMax()[dim - 1];
|
|
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
|
|
// this->boundingBoxMax()[dim - 1];
|
|
|
|
fs.setSaturation(/*phaseIdx=*/0, 1.0);
|
|
fs.setPressure(/*phaseIdx=*/0, 1e5 /* + rho*z */);
|
|
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1.0);
|
|
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, 0);
|
|
fs.setTemperature(T);
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
|
|
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
|
|
}
|
|
}
|
|
|
|
const Scalar eps_;
|
|
|
|
MaterialLawParams materialParams_;
|
|
DimMatrix perm_;
|
|
Scalar temperature_;
|
|
Scalar porosity_;
|
|
Scalar tortuosity_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|