opm-simulators/opm/simulators/aquifers/AquiferNumerical.hpp

322 lines
12 KiB
C++

/*
Copyright (C) 2020 Equinor ASA
Copyright (C) 2020 SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#include <opm/output/data/Aquifer.hpp>
#include <opm/input/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Opm
{
template <typename TypeTag>
class AquiferNumerical
{
public:
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
enum { dimWorld = GridView::dimensionworld };
static const int numEq = BlackoilIndices::numEq;
using Eval = DenseAd::Evaluation<double, numEq>;
using Toolbox = MathToolbox<Eval>;
// Constructor
AquiferNumerical(const SingleNumericalAquifer& aquifer,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebos_simulator,
const int* global_cell)
: id_ (aquifer.id())
, ebos_simulator_ (ebos_simulator)
, flux_rate_ (0.0)
, cumulative_flux_(0.0)
, global_cell_ (global_cell)
, init_pressure_ (aquifer.numCells(), 0.0)
{
this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
auto aquifer_on_process = false;
for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) {
const auto* cell = aquifer.getCellPrt(idx);
// Due to parallelisation, the cell might not exist in the current process
auto search = cartesian_to_compressed.find(cell->global_index);
if (search != cartesian_to_compressed.end()) {
this->cell_to_aquifer_cell_idx_[search->second] = idx;
aquifer_on_process = true;
}
}
if (aquifer_on_process) {
this->checkConnectsToReservoir();
}
}
void initFromRestart(const data::Aquifers& aquiferSoln)
{
auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
if (this->connects_to_reservoir_) {
this->cumulative_flux_ = xaqPos->second.volume;
}
if (const auto* aqData = xaqPos->second.typeData.template get<data::AquiferType::Numerical>();
aqData != nullptr)
{
this->init_pressure_ = aqData->initPressure;
}
this->solution_set_from_restart_ = true;
}
void endTimeStep()
{
this->pressure_ = this->calculateAquiferPressure();
this->flux_rate_ = this->calculateAquiferFluxRate();
this->cumulative_flux_ += this->flux_rate_ * this->ebos_simulator_.timeStepSize();
}
data::AquiferData aquiferData() const
{
data::AquiferData data;
data.aquiferID = this->aquiferID();
data.pressure = this->pressure_;
data.fluxRate = this->flux_rate_;
data.volume = this->cumulative_flux_;
auto* aquNum = data.typeData.template create<data::AquiferType::Numerical>();
aquNum->initPressure = this->init_pressure_;
return data;
}
void initialSolutionApplied()
{
if (this->solution_set_from_restart_) {
return;
}
this->pressure_ = this->calculateAquiferPressure(this->init_pressure_);
this->flux_rate_ = 0.;
this->cumulative_flux_ = 0.;
}
int aquiferID() const
{
return static_cast<int>(this->id_);
}
private:
const std::size_t id_;
const Simulator& ebos_simulator_;
double flux_rate_; // aquifer influx rate
double cumulative_flux_; // cumulative aquifer influx
const int* global_cell_; // mapping to global index
std::vector<double> init_pressure_{};
double pressure_; // aquifer pressure
bool solution_set_from_restart_ {false};
bool connects_to_reservoir_ {false};
// TODO: maybe unordered_map can also do the work to save memory?
std::vector<int> cell_to_aquifer_cell_idx_;
inline bool co2store_() const
{
return ebos_simulator_.vanguard().eclState().runspec().co2Storage();
}
inline int phaseIdx_() const
{
if(co2store_())
return FluidSystem::oilPhaseIdx;
return FluidSystem::waterPhaseIdx;
}
void checkConnectsToReservoir()
{
ElementContext elem_ctx(this->ebos_simulator_);
auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin</*codim=*/0>(),
this->ebos_simulator_.gridView().template end</*codim=*/0>(),
[&elem_ctx, this](const auto& elem) -> bool
{
elem_ctx.updateStencil(elem);
const auto cell_index = elem_ctx
.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
return this->cell_to_aquifer_cell_idx_[cell_index] == 0;
});
assert ((elemIt != this->ebos_simulator_.gridView().template end</*codim=*/0>())
&& "Internal error locating numerical aquifer's connecting cell");
this->connects_to_reservoir_ =
elemIt->partitionType() == Dune::InteriorEntity;
}
double calculateAquiferPressure() const
{
auto capture = std::vector<double>(this->init_pressure_.size(), 0.0);
return this->calculateAquiferPressure(capture);
}
double calculateAquiferPressure(std::vector<double>& cell_pressure) const
{
double sum_pressure_watervolume = 0.;
double sum_watervolume = 0.;
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elem_ctx.updatePrimaryStencil(elem);
const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
if (idx < 0) {
continue;
}
elem_ctx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elem_ctx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
// TODO: the porosity of the cells are still wrong for numerical aquifer cells
// Because the dofVolume still based on the grid information.
// The pore volume is correct. Extra efforts will be done to get sensible porosity value here later.
const double water_saturation = fs.saturation(this->phaseIdx_()).value();
const double porosity = iq0.porosity().value();
const double volume = elem_ctx.dofTotalVolume(0, 0);
// TODO: not sure we should use water pressure here
const double water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
const double water_volume = volume * porosity * water_saturation;
sum_pressure_watervolume += water_volume * water_pressure_reservoir;
sum_watervolume += water_volume;
cell_pressure[idx] = water_pressure_reservoir;
}
OPM_END_PARALLEL_TRY_CATCH("AquiferNumerical::calculateAquiferPressure() failed: ", this->ebos_simulator_.vanguard().grid().comm());
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&sum_pressure_watervolume, 1);
comm.sum(&sum_watervolume, 1);
// Ensure all processes have same notion of the aquifer cells' pressure values.
comm.sum(cell_pressure.data(), cell_pressure.size());
return sum_pressure_watervolume / sum_watervolume;
}
double calculateAquiferFluxRate() const
{
double aquifer_flux = 0.0;
if (! this->connects_to_reservoir_) {
return aquifer_flux;
}
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
// elem_ctx.updatePrimaryStencil(elem);
elem_ctx.updateStencil(elem);
const std::size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
// we only need the first aquifer cell
if (idx != 0) {
continue;
}
elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities();
const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
// const auto &problem = elem_ctx.problem();
const auto& stencil = elem_ctx.stencil(0);
// const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0);
for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
const auto& face = stencil.interiorFace(face_idx);
// dof index
const std::size_t i = face.interiorIndex();
const std::size_t j = face.exteriorIndex();
// compressed index
// const size_t I = stencil.globalSpaceIndex(i);
const std::size_t J = stencil.globalSpaceIndex(j);
assert(stencil.globalSpaceIndex(i) == cell_index);
// we do not consider the flux within aquifer cells
// we only need the flux to the connections
if (this->cell_to_aquifer_cell_idx_[J] > 0) {
continue;
}
const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_()));
const std::size_t up_id = water_flux >= 0.0 ? i : j;
const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
const double invB = Toolbox::value(intQuantsIn.fluidState().invB(this->phaseIdx_()));
const double face_area = face.area();
aquifer_flux += water_flux * invB * face_area;
}
// we only need to handle the first aquifer cell, we can exit loop here
break;
}
return aquifer_flux;
}
};
} // namespace Opm
#endif